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                                                               Foreword 

 
 
 
The members of the POEM ( Physical Oceanography of the Eastern Mediterranean ) and  
POEM-BC( Biology and Chemistry) programme who have contributed to this Report  
for the establishment of a Pan-Mediterranean Initiative gratefully acknowledge the crucial support 
provided through the years to the Programme by the International Oceanographic Commission 
( IOC/UNESCO Ocean Sciences )  and the Mediterranean Science Commission ( CIESM ).  
 
IOC hosted the meetings of the POEM Organizing Committee - most of which were held at the 
UNESCO headquarters in Paris - and published the reports of these meetings, as well as the reports 
of POEM annual scientific workshops, as Unesco Reports in Marine Science. 
 
CIESM gave ample exposure to the Programme by offering special congress sessions and round 
tables at its tri-annual Congresses since the early 1980s . In fact the very idea of launching a scientific 
Programme focused on the Eastern Mediterranean was introduced in a Round Table held at the 
CIESM General Assembly in Monaco, Monte Carlo, 1982. 
 
This Report wants to be the first step in an initiative extending beyond POEM and the POEM 
community and reaching out to include Western Mediterranean scientists sharing the common vision 
of the Mediterranean sea as a laboratory basin for processes of global importance. Many of these 
scientists were gathered at a seminar organized on 7-9 November 2011 at Accademia Nazionale dei 
Lincei in Rome, with the kind support of the Italian Space Academy Foundation, to mark the 25th 
Anniversary of POEM and have substantially contributed to the ideas and the writing of the present 
Report. This newly formed Pan-Med Group wants to send out a call for the establishment of a Pan-
Mediterranean interdisciplinary oceanographic community to investigate the still unresolved issues 
and provide directions for future research. 
 
The present Report is undergoing restructuration to become a full-fledged review paper for Progress 
in Oceanography. 
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1. Introduction and Background 
 
The motivation for this Report stems from a workshop held in Rome in November 2011, on the 
occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) 
Programme. The objectives of the workshop were however rather more ambitious that having 
simply a memorial. First, the workshop was meant to provide a synopsis of the state-of-the-art of 
research and present knowledge of the Mediterranean Sea physical/chemical/biological properties. 
Second, it wanted to offer the opportunity to scientists working in different regions of the sea, both in 
the Western and Eastern basins, to meet and share ideas, and hence foster pan-Mediterranean 
collaborations. 
 
The importance of the Mediterranean sea for the world ocean has long been recognized. First, the 
Mediterranean sea has a profound impact on the Atlantic ocean circulation and, consequently, on the 
global  thermohaline  conveyor belt. Maps of the Mediterranean salty water tongue exiting from the 
Gibraltar strait at intermediate depths and spreading throughout the Atlantic interior are well known 
since the 1950s. Through direct pathways to the Atlantic polar regions or through indirect mixing 
processes, the salty Mediterranean water preconditions the deep convection cells of the polar 
Atlantic. There the North Atlantic Deep Water is formed which successively spreads throughout the 
world ocean constituting the core of the global thermohaline circulation. 
 
Even more importantly, the Mediterranean sea is a laboratory basin for the investigation of processes 
of global  importance,  being much more amenable to observational surveys because of its location in 
mid-latitude and its dimensions. Both the western and eastern basins in fact possess closed 
thermohaline circulations analogous to the global conveyor belt. A unique upper layer open 
thermohaline cell connects the eastern to the western basin and, successively, to the north Atlantic 
through the Gibraltar strait. In it, the Atlantic water entering into Gibraltar in the surface layer, after 
travelling to the easternmost Levantine basin, is transformed into one of the saltiest water masses 
through air-sea heat and moisture fluxes. This is the salty water which, crossing the entire basin in 
the opposite direction below the surface Atlantic water, finally exits from the Gibraltar strait at mid-
depths. 
 
Both the western and eastern basins are endowed with deep/intermediate convection cells 
analogous to the polar Atlantic deep convection cells or to the intermediate mode water ones. Deep 
and intermediate water masses are therefore formed in different sites of the entire basin. Because of 
their easily accessible locations, these convection cells are much more amenable to direct 
observational surveys and mooring arrays. 
 
An ubiquitous, energetic mesoscale and sub-mesoscale eddy field is superimposed to and interacts 
with the sub-basin scale, wind-driven gyres that characterize the upper thermocline circulation. 
Three different scales of motion are therefore superimposed producing a richness of interaction 
processes which typify similar interactions in unexplored ocean regions. 
 
Both wide and narrow shelves are present separated by steep continental slopes from the deep 
interiors. Cross-shelf fluxes of physical as well biogeochemical parameters are crucial in determining 
the properties of the shallow versus deep local ecosystems and their trophic chain. Most importantly, 
the Mediterranean sea is a basin of contrasting ecosystems, from the strongly oligotrophic deep 
interiors to the fully eutrophic northern Adriatic characterized by recurrent, anomalous algal blooms 
and related anoxia events. 
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For reasons that may be linked to geographical locations and related national scientific policies, the 
western and eastern basins have been mostly investigated independently from each other. 
International collaborative programs such a the Gibraltar Experiment, the Western Mediterranean  
Circulation Experiment (WMCE), the Programme de Recherche Internationale en Méditerranée 
Occidentale (PRIMO) and POEM  itself have continued to investigate separately individual subbasins 
in the western or eastern sides.  
 
Hence the major motivation for this report: it is a call for a  Pan-Mediterranean initiative bringing 
together the western and eastern oceanographers. It is a call for the initiation of a broader, fully 
interdisciplinary collaboration to create a Mediterranean community of physical, chemical, biological 
oceanographers and, hopefully, also of Mediterranean climate scientists. This review focuses on the 
identification of the major unresolved issues and wants also to provide directions for future research  
leading to the formulation of an implementation plan to address these issues both theoretically and 
observationally. 
 
 
. 
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 2. Differences and similarities between the Western and Eastern Mediterranean  
 
 
2.1 Scales of variability of the Mediterranean circulation 
 
State of knowledge 

 
Scales of oceanic circulation are crucial for two reasons. First, from the theoretical point of view, 
since the ratio between horizontal scales of a baroclinic motion and the deformation radius 
determines the baroclinic stability of the motion (Saunders, 1973) and, second, from the practical 
point of view, since in oceanography the properties of the investigated system vary in space and time. 
Therefore, to capture the variability of the phenomena that characterize a given oceanic region, 
specific sampling strategies accounting for the characteristic spatial and temporal scales of 
variability of the phenomena that characterize the region, need to be adopted.  
 
One source of variability of scales and energy fluxes through the ocean is the one connected to dense 
water production process and the linked downslope flow (Winters et al., 1995; Nycander et al., 2007; 
CIESM 2009; Winters and Young, 2009). 
 
Wintertime Dense Shelf Water Cascades (DSWC) can transport large amounts of water and sediment 
through submarine canyons, reshaping the canyons and affecting the deep water environment in the 
process. An excellent example was presented by Canals et al. (2006) from observations in the Cap de 
Creus Canyon in the Gulf of Lions in the Mediterranean Sea (one of his figure shows measurements 
made during a gravity/turbidity current event, which shows current speeds as high as 80 cm/s and 
high sediment concentrations). Similar events can be expected to occur in the Bari Canyon when 
North Adriatic Deep Water (NADW) formed in the northern parts reaches Bari Canyon System (BCS) 
in a few months. BCS intercepts sediments derived from Po and southern Apennine rivers and 
funnels this material into the deep South Adriatic Basin (we may reproduce a couple of figure from 
the above mentioned papers). 
 
A useful approach to describe scales of oceanic circulation relates to the vertical partitioning of 
oceanic energy into barotropic and baroclinic components (Wunsch and Stammer, 1995; Stammer, 
1997; Wunsch, 1997). This allows identifying the dominant components of the motion and estimate 
its characteristic scales in terms of Rossby radii of deformation (Lermusiaux and Robinson, 2001). 
However, the quantification of the relative importance of the barotropic and baroclinic mode(s) in 
determining the horizontal circulation is difficult, due to the fact that, for a faithful description of a 
given region of the ocean, nearly continuous sampling over wide areas is necessary. 
 

Another possible approach is based on satellite remote sensing, which allows gaining data over wide 
areas of the ocean nearly continuously. This approach implies direct evaluation of the scales of 
variability of a specific passive scalar, assumed to be a tracer of the surface circulation (Barron and 
Kara, 2006; Borzelli and Ligi, 1999; Borzelli, 2008), or evaluation of the scales of variability of the sea 
surface structure (Ioannone et al., 2011). This approach, however, leads to great uncertainties since, 
first, through direct evaluation of scales, it is difficult to determine which is the dominant vertical 
component determining the horizontal circulation and, second, interacting components due to 
nonlinearities and active over short scales are filtered out.  
 
Even though after POEM and PRIMO the dominant scales of the horizontal Mediterranean circulation 
have been identified (overall basin scale, sub-basin scale and mesoscale), the relationship between 
the intensity of the Mediterranean overturning circulations and deep mixing rates is not yet 
understood. Mixing in the deep global ocean is an important process that triggers the global 
overturning circulation as it controls the diffuse upwelling counteracting the formation of deep and 
bottom water masses, thus maintaining the stratification. Mixing occurs via the breaking of internal 
gravity waves or via tidal dissipation over shelves and near major topographic features. Two closed 
thermohaline cells, and related overturning circulations, exist in the Mediterranean. The amount of 
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mechanical energy required for the mixing is believed to be small due to the absence of strong tides 
in the Mediterranean as compared to the world oceans. However, the question remains: how can the 
Mediterranean overturning circulations be so large if the mechanical energy available for mixing is so 
low? 
 
Specific issues 
 

1. The horizontal circulation is the result of the superposition of vertical modes. To which 
extent changes in the energy contained in individual vertical components determine the 
variability of the scales of the horizontal circulation? 

 
2. Vertical changes in the vertical advection are related to horizontal changes of the horizontal 

advection. How does the variability in the horizontal scale modify the distribution of scalars 
(i.e. energy included) over the entire  the water column? 

 
3. Are specific vertical modes responding selectively to external forcing or does this affect 

equally all the vertical modes? 
 

4. Which are the  mechanisms of energy exchanges between different vertical modes and how 
do these exchanges affect the scales of the horizontal circulation ? 

  
5. How are the scale and  strength of the Mediterranean overturning circulations related to 

deep mixing rates? 
 
 
2.2 Differences and similarities between circulation, forcing and water mass conversion in 
      the Western and Eastern Mediterranean and interactions between the basins 

 
State of knowledge 
 
The Western and Eastern Mediterranean (WMed, EMed) are connected by the Straits of Sicily (sill 
depth ~500 m). Forcing is dominated by exchange with the Atlantic Ocean through the Strait of 
Gibraltar in the west (sill depth about 300 m) and, to a lesser degree, also with the Black Sea through 
the Strait of Dardanelles in the northeast. There is also a number of straits and channels that connect 
both the WMed and EMed with the marginal seas. They play a crucial role in determining the water 
mass exchanges and related properties (Astraldi et al., 1999). The other factor is atmospheric forcing, 
primarily in the form of net evaporation. Local climate variability exists due to both the different 
impacts of large scale teleconnection patterns (NAO, EA/WR, etc) on the WMed and EMed (Josey et 
al., 2010) and the regional characteristics (Xoplaki et al., 2003, 2004). The induced eastward salinity 
increase in the upper waters results in two kinds of thermohaline cells. The upper, open conveyor 
belt consists of eastward flow of low-salinity Atlantic Water (AW) and the formation in the Levantine 
and subsurface westward spreading of the warm and saline Levantine Intermediate Water (LIW) in 
200-400 m (i.e. at depths shallower than the Sicily and Gibraltar Strait sills; Schroeder et al., 2012), 
enriched sporadically by Cretan Intermediate Water (CIW). It enters the WMed and finally outflows 
through the Gibraltar Strait. A further ingredient in this is the Winter Intermediate Water (WIW), 
both cooler and fresher than the LIW, formed in the WMed (Send et al., 1999). Secondly, there exist 
internal, or quasi-closed thermohaline cells in both Mediterranean Basins driven by deep water 
formation processes in the northern regions of the seas. These deep waters are partly involved in the 
Sicily and Gibraltar overflows. The WMDW is formed in the open region of the NW Mediterranean, 
while the EMDW originates in marginal seas, regularly mostly the Adriatic but also the Aegean and, 
sporadically, in the NW Levantine (Kontoyiannis et al., 1999).  
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The eastward flow of AW is concentrated in the southern parts of both basins (Algerian Current and 
Libyo-Egyptian Current, respectively). That flow is unstable and generates (anticyclonic) eddies ~50-
100 km (up to 200) in diameter. In the northern part of the WMed, AW flows westward as a surface 
permanent current along slope, which is a recirculating branch that detaches AW from southern 
latitudes in the SW area of Sicily (Millot and Taupier-Letage, 2005). This westward Northern Current 
shows a marked seasonal variability, with increased mesoscale activity during wintertime (Millot, 
1999). In the Levantine Basin, the AW is topped by the more saline Levantine Surface Waters during 
the warm period of the year. The Eastern Mediterranean upper circulation, in contrast, is 
characterized by sub-basin scale gyres and permanent, or quasi-permanent, cyclonic and anticyclonic 
structures interconnected by intense jets and meandering currents (Robinson et al., 1991; POEM 
Group, 1992; Malanotte-Rizzoli et al., 1999). The difference may arise from the highly structured 
bathymetry in the EMed, compared to the WMed, which has a virtually flat bottom east and south of 
the Balearic Islands. In the Tyrrhenian Sea, the WMDW and the overflow from the Eastern 
Mediterranean mix, lifting the former component to allow it to take part in the Sicily Strait outflow 
(Millot, 1999), and, at the same time, forming a deep salinity source for the WMDW ( Gasparini et al., 
2005) 
 
The classical view that the thermohaline circulation of the Mediterranean was quasi-stable has more 
recently been overruled. During the 1990s the Aegean deep water formation took over from the 
Adriatic. Huge amounts of dense waters characterized by enhanced salinity and temperature were 
released for a few years, forming the Eastern Mediterranean Transient (EMT; Roether et al., 1996, 
2007; Theocharis et al., 1999, 2002; CIESM, 2000), significantly influencing the thermohaline 
structure and stratification of the entire eastern Basin. A specialty is that the Aegean dense-water 
outflow feeds into the Hellenic Trench region before being transferred into the EMed at large. 
Recently it was suggested that the EMT could be a recurrent phenomenon (Borzelli et al., 2009; 
Pisacane et al., 2006). EMT-induced changes have been communicated through the Sicily Strait to the 
WMed, with the role of the Tyrrhenian becoming enhanced for some years (Gasparini et al.,2005; 
Roether and Lupton, 2011). Indeed, a significant warming and salinification of the whole water 
column has been observed also in the Western Mediterranean, comparable to the EMT, both in terms 
of intensity and observed effects (Schroeder et al., 2008). This event of high production of 
anomalously warm and salty new deep water during winters 2004/2005 and 2005/2006 ( Font et al., 
2007) is now known as the Western Mediterranean Transition (WMT). Currently, thus, the 
subsurface distributions of temperature and salinity, as well as of most other properties in the entire 
Mediterranean are far from a steady state.  
 
While the eddies in the southwest part of the WMed are believed to be freely moving, some authors 
support the view that a similar situation holds also further east and all through the EMed (Millot and 
Taupier-Letage, 2005), while others support the idea of permanent or recurrent eddies in the EMed 
(Robinson et al., 1991; POEM Group, 1992; Malanotte-Rizzoli et al., 1999). There is a discussion of the 
eddies found along the slopes of Libya and Egypt in relation to an assumed instability of the Libyo-
Egyptian Current (Alhammoud et al., 2005; Hamad et al., 2005; 2006). It seems that bottom 
topography is important in that context. There is an expressed need to develop a coherent 
combination of observations with modelling studies. Only that combination is believed to show the 
true nature of the circulation in both basins, and also to optimize future observations. 
There is furthermore a need for clarification of the role of the characteristic atmospheric circulation 
patterns (west vs. east), also in the context of large climatic variations and trends, that are associated 
with variability of the circulation and with deep water formation events. 
 
The changes observed in the circulation during the last decades, such as the reversals in the Ionian 
circulation (Borzelli et al., 2009; Gacic et al., 2011) and the transport of the EMT effects westwards 
(Gasparini et al., 2005) dictate a more thorough study on water mass spreading pathways and their 
variability and on water mass conversion, as well as temporal and spatial variability in the marginal 
seas of the EMed (Adriatic/Aegean). Only if these items have been resolved will it be possible to come 
up with quantitative answers on the geochemistry and ecology of the Mediterranean Sea. 
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Specific issues 
 

1. A principal concern is to improve the understanding of the long-term variability and 
evolution of the Mediterranean circulation. A special item that is urgent to be amended is 
scarce data in the southern part of the EMed in consequence of the political situation in the  
past. One need is to monitor the path and characteristics of the AW after it entered the 
Mediterranean at Gibraltar, to find the causes of its path variability after passing the Sicily 
Channel, and to determine the fraction that continues in the south along the African coast. 
Furthermore, it is needed to monitor the characteristics of the overflows of the Gibraltar and 
in the Sicily Straits, and relate their variability with that observed in both Mediterranean 
Basins. Additionally, we need to improve our understanding of the eddies and their different 
natures (permanent/transient) and lifetimes. 

 
2. A further subject is the changes relevant to the EMT since the mid 1990s and the 

corresponding changes in the WMed, and the related variability over decadal or longer time 
scales in the entire Mediterranean, also in relation to the ongoing climatic changes (IPCC 
report). Analysis of such timescales is also needed for the past, because past occurrence can 
enlighten future scenarios. This analysis is straightforward for water properties based on 
historical hydrographic data after the early 50s, but the question of the past circulation 
patterns is more difficult so that one has to employ model simulations. Finally, the 
interaction between subsurface Eastern and Western Mediterranean waters must be further 
clarified. 

 
3. These targets dictate the field observations that will have to be undertaken. One direction is 

to reapply past observational strategies, such as multi-ship multi-national hydrographic 
surveys on a decadal timescale for both Mediterranean Basins that will extend to the near-
Africa areas, but including presently available technology on direct current measurements. 
Mostly latitudinal deep transects should be added (as useful extension of the CIESM-
HydroChanges program). The transects can ideally be serviced by merchant ships equipped 
with ADCPs and XCTDs (or XBTs). The other is to continuously monitor certain parameters 
at key locations, such as straits and water formation areas. 

 
 
2.3  Forcings and variability in the stock of nutrients in the Eastern and Western 
       Mediterranean 
 
State of Knowledge 
 
Despite the large effort to describe biogeochemical processes in the Mediterranean during programs 
such as POEM-BC, MATER and SESAME, a basin-wide picture of the different processes determining 
the biogeochemical functioning of the basin has rarely been attempted. 
 
In this section we use the term biogeochemical in a restrictive sense, focusing on the distributions of 
basic elements involved in the basin. Based on nutrient concentrations, the western and the eastern 
Mediterranean are classified as oligotrophic or extremely oligotrophic. However, nutrient 
concentration is not the unique indicator of the trophic regime. The inclusion of atmospheric 
deposition, riverine inputs and exchanges with the Black Sea provides a less dramatic picture of the 
elemental availability in the photic zone. Atmospheric deposition is indeed the source of at least half 
of the macronutrients input in the Mediterranean Sea (Guerzoni et al., 1999). Krom et al. (2004) 
presented a detailed nutrient budget for the eastern Mediterranean and showed that atmospheric 
input of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) accounts for 
61% and 28% of the total budget of nitrogen (N)  and phosphorus(P) respectively.  
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The non-Redfieldian N:P ratio that characterize nitrogen and phosphorus present in the atmospheric 
deposition processes, in dissolved or soluble inorganic forms (Ridame et al., 2003), is the natural 
candidate to explain the anomalous high N:P ratio typical of the Mediterranean. Indeed, it displays an 
eastward increasing trend, from about 20:1–24:1 in the western basin to 28:1 in the eastern one 
(Markaki et al., 2008).  
 
In the Mediterranean, river loads, even relatively important, have limited shelves (with the 
noticeable exception of the Po and West Adriatic rivers) and release their nutrient content directly 
into the open ocean. General circulation processes, such as the recurrent meandering of the northern 
current over the Provencal-Catalan shelf, facilitate the export of nutrients from the coastal region 
offshore. Irregular bathymetric features near the coastal region, such as canyons, enhance the export 
of water properties and suspended material offshore (see also sections 3.2 and 4.1), contributing to 
an efficient transfer of coastal signals to the open-ocean (Gomez et al., 2003). 
 
These processes contribute to mitigate the unbalance in phosphate and nitrate budget estimated at 
Gibraltar (surface waters with low nutrient concentration, about 3-4uM N enter the Alboran Sea in 
the upper layer of ~ 200 m., while roughly twice as much exits in the lower layer). In addition, the 
large differences in water fluxes at Gibraltar Strait (0,81 Sv in, 0.76 out, CANIGO group) and the 
exchanges at the Sicily channel (around 1.2 Sv), suggest that in the western Mediterranean a relevant 
recirculation (with an associated supply of nutrients) must take place between the intermediate and 
upper layer, even if wind-driven upwellings are relatively small and not permanent. This is testified 
by the relatively steady concentration of the nutrients in the deep layers of the Mediterranean. 
 
Specific issues 
 

1. Understanding the functioning of the Gibraltar valve  
The Mediterranean is connected to the Atlantic  through a shallow sill at Gibraltar which is 
expected to decrease the runover of tracers passing through the Gibraltar strait. While 
numerous budget estimates exist for the steady state, a dynamical reconstruction of the  
exchange with the Atlantic has never been attempted. A better understanding of the 
functioning of the Gibraltar valve at different time scales (from decadal to centennial) is a 
necessary step to analyze the Mediterranean internal variability and changes in nutrient 
stocks.  

 
2. Turnover rates and exchanges between Mediterranean sub-basins.  

The turnover rates of Mediterranean nutrient stocks in different basins depend not only  on 
advective processes and exchanges through the straits, but also on water mass 
transformation rates and biogeochemical processes. Constraining the physical drivers with 
classical approaches based on passive tracers and modelling would allow one to determine 
the coupling between surface biology and internal remineralization, which would also help 
in building scenarios of future trends in the basin. Furthermore, biogeochemical processes in 
filaments, fronts and eddies may be very important in coupling the surface and deep layers  

 
3. Time scales of internal variability. 

To assess the scales of internal variability a careful analysis about possible longer term  
oscillations/trends is required. Existing data bases, even in present reviewed forms display 
high internal noise and dispersion of data. Despite this an updated assessment of pluri-
decadal trends in nutrient concentrations for the eastern and western Mediterranean must 
be carried out starting from the existing data base.  

 
4. Data on stable isotopes collection. 

Points 2 and 3 above may profit from an increase in data production on stable isotopes. 
Stable isotopes have been recently used to discriminate the different atmospheric inputs in 
the eastern basin. Less is known for the western basin and, overall, data available are still 
too few. δ15N have also been used to infer trophic levels of copepods or top predators  
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(e.g., Koppelman et al., 2009) still without covering the whole basin. Future surveys should 
consider those parameters, especially to approach the problem of external vs. internal 
contribution of elements to the basin production. 

 
5. Silicon dynamics. 

As pointed out by Ribera d’Alcalà et al. (2003), balancing the silicon budget in the 
Mediterranean is difficult with the existing data. The silicon distribution in the 
Mediterranean shows a different gradient with respect to nitrogen and phosphorus, 
indicating that a better representation of the silicon sources is necessary to quantify its 
variability in the open sea. In addition, there are sediment trap data that show a large 
proportion of biogenic silica, in contrast to the low primary production (at least in the 
Eastern Basin). 

 
6. Mutual feedbacks between biogeochemical functioning and community structure. 

These feedbacks display differences among the sub-basins of the Mediterranean which need 
to be better addressed. Furthermore, the functioning of the biological pump should be 
investigated, combining estimates of pCO2, satellite PP , Chl-a data and POC fluxes measured 
by sediment traps at various depths along with the role of community structure (D’Ortenzio 
and Ribera D’Alcalà, 2009).  

 
7. Biogeochemical processes in intermediate and deep layers.            

These processes should be analyzed in relation to the higher respiration rates and the very 
low values of dissolved organic carbon ( DOC, Santinelli et al., 2010). 

  
 
2.4   Modeling and assessing ecosystems in the Mediterranean sea 
 
State of knowledge 
 
The merge of the whole Mediterranean  sea in a single bio-province as proposed by Longhurst (1998) 
has been questioned by other papers based on different approaches : in situ data (Bianchi and 
Morri,2000), remotely sensed surface chlorophyll (D’Ortenzio and Ribera d’Alcalà, 2009), and decadal 
simulation of hydrodynamical-biogeochemical models (Lazzari et al., 2012). In fact, even being 
smaller, the WMed displays a larger number of trophic regimes than the eastern basin with the 
exception of a limited area of Adriatic sea ( D’Ortenzio and Ribera d’Alcalà, 2009).  
This is largely due to the different forcings and their modulation by the morphology of boundaries, 
which may in turn produce a different internal dynamics. The link between differences in 
multiannual through pluri-decadal variability in the internal dynamics of the two basins and the 
biotic dynamics is still an unexplored trait of the Mediterranean sea. This issue deserves even more 
attention considering the recent finding of multiannual oscillations in the eastern Mediterranean  
(Gacic et al., 2011). This fact, in turn, highlights that processes occurring in the basin should be 
approached through their appropriate space and time scales, spanning from the climatological to the 
decadal (and longer) variability. The need to investigate the impacts of the internal and forced 
variability on longer time scales on the Mediterranean community structures and composition 
requires better, qualified, problem-oriented models and model systems. A number of 3D models 
were developed at the basin scale using a simplified food web (NPD) (Crise et al., 1998; Crispi et al., 
1998) to study/simulate the east-west  gradient in nutrient limitation and DCM depth, as well as the 
impact of the general circulation on the ecosystem dynamics. More complex 1D (water column) 
configurations based on the  ERSEM and BFM model were used to study the ecosystem functioning in 
more detail, although mostly at the regional scale, addressing the dynamics of the microbial loop, the 
bacterial dynamic and primary production (Allen et al.,1998; Anderson et al., 2003; Polimene et 
al.,2007; Lazzari et al., 2012). A significant effort has focused on the data assimilation of biophysical 
parameters into an ecosystem model of the eastern  Mediterranean (Triantafyllou et al., 2005; 
Triantafyllou et al., 2007). To fulfill the above needs information derived from experimental evidence, 
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and scenarios provided by model studies should be merged in order to be able to describe the whole 
dynamics of the Mediterranean ecosystem(s).   
 

Specific issues 
 

1. The Mediterranean ecosystem structure(s) are clearly influenced by the overall 
physical/chemical processes and exchanges active in the basin which on one hand sustain a 
large level of endemism, most pronounced in the EMed and, on the other hand, favoured the 
immigration of many species of Atlantic origin which dominate the Mediterranean 
communities and the invasion of alien species from either Gibraltar, Suez and anthropogenic 
transport. The short time needed by several new immigrants hints at the presence of open 
niches, which should be investigated. 

2. The relative oligotrophy in the Mediterranean Sea is zonally modulated and has two 
different aspects, one related to the upper layer above the nutricline , the second below it. 
The first one is related to the combined effect of estuarine inverse circulation, and the 
biological pump. More nutrients enter in the WMed through Gibraltar Strait that those 
entering the Ionian Sea through Sicily Strait, largely because of the rescue of exiting 
nutrients by the enhanced tidal mixing and entrainment within the Atlantic surface water. 
This in turn favours a plankton community structure more effective in the carbon and 
nutrient export into the ocean interior than the EMed that functions as a nutrient trap. In the 
EMed internal vertical dynamics seems weak, and plankton communities have to rely either 
on regenerated production (the microbial loop paradigm) or on the atmospheric inputs. All 
the above implies that there should be significant differences in the structure of 
communities, unless organisms plasticity may compensate for such differences in 
environmental conditions. Differences should be explored, and be detected, in the higher 
trophic levels. This has very seldom been done and must be addressed revisiting existing 
data but also profiting of new approaches, e.g., metagenomics. 

 
3. The mesoscale has a typical length smaller than the major oceans (about 15-20 Km 

according Pinardi and Masetti, 2000) but the coherent structure found in the satellite images 
are roughly three-four times the Rossby internal deformation radius. Larger, long-lasting 
anticyclonic eddies are regularly generated in the Algerian Current, most probably because 
of baroclinic instability of this current rimming the African coast. A number of large, 
recurrent, continuously evolving structures connected by jets and separated by fronts 
(Robinson and Golnaraghi, 1994) have been observed in the surface waters both sub-basins, 
but the response in surface chlorophyll is not clearly connected to the vorticity polarity and 
in the EMed during the stratified season no Chl-a features are evident. This dynamics may be 
related to the apparent optical properties of the surface waters, which exhibit a clear 
increment of the light extinction coefficient going westward whose origin has to be 
thoroughly investigated. 

 
4. The Dissolved Oxygen vertical structure in the Mediterranean, even considering the short 

residence time compared to the global ocean, shows only a slightly pronounced oxygen 
minimum layer (if any) compared to other bio-provinces (i.e. Equatorial Pacific). This 
highlights a relatively small export likely due to the peculiar community structure and 
composition. This in turn further reduces the concentration of macronutrients in basin 
interior, which suggests that the community exploits most of the nutrients in the surface 
layer. Whether this feature is linked to a specific community structure has to be investigated. 

 
5. Recent analysis of model results and data from the Dyfamed station (NW.Med)and E2M3A 

observatory (S.Adriatic sea) exhibits a peculiar behavior, which confirms that the increase of 
the biomass/chlorophyll is concomitant with deepening of the mixed layer (in contrast to 
the Sverdrup paradigm) even in sites where deep water formation recurrently takes places. 
This mechanism is not fully understood and needs further investigation . 
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6. While recent analyses hint at a relevant role of interannual variability in the EMed, existing 
data show that the seasonal cycle is the dominant component of variation. However the 50-
year Mediterranean climatology provides evidence for consistent temperature changes in 
the WMed and the N-Atlantic, explained by similarities in the atmospheric heat fluxes 
anomalies strongly correlated to NAO (Rixen et al, 2005). Whether this long term trend is 
impacting on the food web has still to be assessed. 

 
7. The interannual variability of primary production, standing crop and other Essential 

Climatic Variables in Mediterranean Sea are of order of 10-20% if compared with the 
seasonal cycle, however the copepod community composition and abundance (even with a 
clear seasonal cycle) exhibits for the Ionian Sea a much less variability suggesting that the  
predator-prey relationships cannot be understood and modeled only on the basis of the 
statistical encounter rate. 

 
8. Global increases in atmospheric CO2 and temperature are associated with changes in ocean 

chemistry and circulation, altering light and nutrient regimes. Resulting changes in 
phytoplankton community structure are expected to have a cascading effect on primary and 
export production, food web dynamics and the structure of the marine food web as well the 
biogeochemical cycling of carbon and bio-limiting elements in the sea. A review of current 
literature indicates that cell size and elemental stoichiometry often respond predictably to 
abiotic conditions and follow biophysical rules that link environmental conditions to growth 
rates, and growth rates to food web interactions, and consequently to the biogeochemical 
cycling of elements. This suggests that cell size and elemental stoichiometry must be 
monitored to allow modelling and tracking changes in phytoplankton community structure 
in response to climate change. In turn, these changes are expected to have further impacts 
on phytoplankton community structure through as yet poorly understood secondary 
processes associated with trophic dynamics (Finkel et al., 2010). 
 

9.  Autonomous observational techniques profiting of the advancement of technology for 
measuring parameters which have been traditionally linked to bottle sampling, should be 
implemented because they provide new relevant information on distributions and internal 
dynamics. This may also shed light on how the spectrum of variability in vertical motions is 
different among the two basins and how this links to the differences observed in trophic 
regimes. Special processing techniques and sampling strategies should be developed to 
separate the different spatial/temporal scales present in the most advanced observing 
platforms (gliders, bio-ARGOs). 

  
10.  Scenarios should be built of future trends which may be constructed on the basis of the 

general view of how the fluxes form the boundaries, as well as of the exchange with the 
ocean that will change due to the present Earth system functioning. An evolutive trait based  
approach in description of the key functional groups should be developed as well to match 
the time rate of changes of the habitat (natural and anthropic) variability 

 
11. The Mediterranean orography, as well as, its circulation functioning, is composed of 7-8 sub-

basins connected by straits. In their interior, sub-basins have internal (in some way 
independent) dynamics, where the impact of the other sub-basins is ruled by the exchanges 
at the connecting straits. In this context, the Mediterranean nutrient dynamics could be 
simplified as several, interconnected boxes. This simplified picture should allow the testing 
of scenarios (i.e. modifications of boxes internal functioning, changing fluxes at the 
connecting boundaries, steady state vs interannual/decadal variability, connections/ 
feedbacks/ linkages with climate alteration), directly focusing on the impact of the internal 
vs external forcing on the nutrients, spatio-temporal repartition between sub-basins. 
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3.  Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing 
through straits) versus internal variability 

 
 
3.1 Major forcing of the Mediterranean circulation 
 
State of knowledge 
 
The Mediterranean circulation is characterized by three predominant interacting spatial scales : 
basin, sub-basin and mesoscale. 
 
The basin scale circulation is broadly described in terms of a surface flow from the Atlantic ocean 
entering through the Strait of Gibraltar and proceeding to the eastern basin, and a return flow  of 
intermediate water, originating in the Levantine basin, proceeding towards Gibraltar and finally 
exiting into the Atlantic. This basin scale open cell is mainly driven by thermohaline forcing: an east-
west density gradient, associated with enhanced heat and moisture fluxes in the Levantine sea, 
drives the eastward flow of surface Atlantic water. In the Levantine basin the ocean release buoyancy 
to the atmosphere through heat loss and an evaporation/precipitation deficit. The buoyancy loss 
reduces the stability of the water column, with loss of potential energy in the Levantine. This energy 
deficit is compensated by a buoyancy gain associated with the inflow of the fresh surface Atlantic 
water. For this open cell, the forcing of the Mediterranean basin-scale circulation are the inflows 
through the Gibraltar and Sicily straits. 
 

Sannino et al. (2009) discuss the importance to include variations of the Atlantic water inflow 
through the Gibraltar Strait to describe decadal variations in the western Mediterranean circulation 
pattern. Similarly, Malanotte-Rizzoli and Bergamasco (1991), investigating the relative contribution 
of wind forcing, thermohaline surface fluxes and boundary conditions to the EMed circulation, 
showed that flow changes in the Sicily Strait can induce variability in the circulation pattern at the 
basin scale. Pierini and Rubino (2001) modeled the remotely forced dynamics in the areas 
surrounding the Strait of Sicily and, imposing steady fluxes along the open boundaries, obtained in 
the absence of meteorological forcing, quasi-stationary circulations representing the local 
manifestation of the large-scale Mediterranean conveyor belt. 
 
It is interesting to note that Demirov and Pinardi (2002), discussing changes in the Ionian circulation 
in relation to the variability in the thermohaline properties of the water mass formed in the 
Levantine, provided evidence that variations in the latter one could be associated with changes in the 
Ionian circulation. Gacic et al.,(2010, 2011) showed that these changes may be responsible for 
modifications of the eastern Mediterranean thermohaline cell, thus impacting the overall structure of 
the eastern Mediterranean circulation. This finding constitutes an example in which changes in the 
sub-basin scale alter the basin scale circulation pattern. 
 
By comparing Lagrangian velocities from drifters deployed in the Mediterranean in the period 1993-
2008 and geostrophic velocities  from altimeter data in the same period, Poulain et al.(2012) showed 
that the basin scale upper-layer Mediterranean circulation can be reasonably described by 
geostrophy over time scales longer than a week, with the notable exception of the Aegean and 
Adriatic seas. Borzelli et al.( unpublished manuscript ) analyzed altimeter and wind data over the 
same period and showed that the work by the wind on the geostrophic circulation was on average 
negative, indicating that during that period the wind worked against the circulation. These results 
open the issue of the energy reservoir sustaining the Mediterranean circulation. 
 
Air-sea heat and moisture fluxes drive also the eastern and western convection cells through 
formation of dense water in the southern Adriatic and Gulf of Lion, respectively. The same process 
occurs on shallow shelves and the dense shelf water can sink into the deep sea through coastal 
canyons. Sub-basin scale gyres are the building blocks of the thermocline circulation, they are 
present both in the western and eastern basins and strongly topographically controlled. At a scale 
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intermediate between the sub-basin and the mesoscale, permanent features such as the Iera-Petra 
Gyre and the Pelops Gyre in the eastern Mediterranean are driven by the wind in areas of strong 
wind curl. Mesoscale instabilities modulate the coastal currents and the outer rims of the sub-basin 
features such as the Rhodes gyre in the eastern basin or the Gulf of Lions gyre in the western one. 
The existence of these multiple scales is not only due to the multiple external forcings but also to 
internal dynamical processes and  topographic control. The external forcings include the wind stress, 
the air-sea heat/moisture fluxes as well as the exchanges through the straits of Gibraltar and Sicily.   
 
Specific issues 
 
1. If the work done by the wind on the geostrophic Mediterranean circulation is negative and heat 

is on average lost from the ocean, what is the source of energy sustaining the geostrophic 
circulation ? 
 

2. Which are the dominant space/time scales of energy and momentum transfer from the wind to 
the ocean ? 

 
3. Assuming that the surface Mediterranean circulation is basically geostrophic, is the transfer of 

energy among different  time/space scales sufficient to sustain it ? What is the dissipative time 
scale ? 

 
4. What are the dominant mechanisms for energy transfer between the different scales of the 

circulation ? Are they barotropic or baroclinic in nature ? 
 

 
3.2 Interactions between the shelf/slope circulation and open sea in the Mediterranean  
 
State of knowledge 
 
Most of the Mediterranean Sea is characterized by relatively narrow shelf/slope zones so that 
through much of the basin the open sea is in close proximity to the coastal region. On the other hand, 
in the adjacent basins of the eastern Mediterranean - the Adriatic and Aegean Seas – the shelf is 
relatively wide but laterally confined. These seas are subjected to pronounced wind forcing and 
surface buoyancy loss in winter, and to considerable fresh water inflow (rivers in the Adriatic; Black 
Sea outflow in the Aegean). The interaction between the shelf/slope zone and the open sea regimes 
has many facets and occurs over a range of spatial and temporal scales. The dynamical processes and 
circulation features are constrained by the interaction between the smaller/limited scales of the shelf 
dynamics and the larger scales of the open sea circulation. A prominent feature of the shelf/slope 
zone is a jet which usually flows along the bathymetry near the shelf break or over the slope. Often it 
meanders and generates eddies or filaments, thereby leading to a net cross shelf flow.  Another 
process that leads to cross shelf flow is dense shelf water cascading (DSWC) in which dense water 
formed by cooling and evaporation over the relatively shallow continental shelf spills over the shelf 
edge and sinks as a bottom-trapped gravity current until reaching a level of neutral density. Such 
features and processes are important for the shelf – open sea exchange of dissolved and suspended 
material and therefore have a major effect on biogeochemical processes and the ecosystem. 
 
The circulation in the Alborán Basin is characterized by the intense inflow/outflow regime due to the 
exchange of water between the Atlantic and the Mediterranean through the Strait of Gibraltar. 
Atlantic Water entering the Mediterranean in the upper layer forms the intense Atlantic Jet. This jet 
meanders and forms the quasi-permanent West Alborán Gyre (e.g., Baldacci et al., 2001), and an 
intermittent Eastern Alborán Gyre (EAG). The eastern boundary of the EAG is formed by  the 
Almería-Oran front (e.g., Ruiz et al. 2009a) and marks the start of the Algerian Current (AC) (Millot, 
1985). As the AC progresses eastward, it forms baroclinically unstable meanders that can evolve into 
coastal eddies. Only anticyclonic eddies are long-lived (Puillat et al., 2002; Isern-Fontanet et al.,2006).  
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They usually propagate along the bathymetry, can detach from the current and become open-sea 
eddies (Millot and Taupier-Letage, 2005 and references therein).  Some eddies are quasi-permanent 
and can divert the AW flow offshore as far as the south of the Balearic Islands (Taupier-Letage and 
Millot, 1988).  
 
The Ligurian-Provençal Basin in the northwestern Mediterranean is dominated by the Northern 
Current. The flow is maximum during winter with significant mesoscale variability, and weakens 
during summer (Millot and Taupier-Letage, 2005). In the Balearic Basin it splits in two branches, one 
recirculating into the Balearic Current (e.g., Ruiz et al., 2009a) and the other continuing south 
through the Ibiza Channel (Pinot et al., 2002). The Balearic Basin is also characterized by shelf-slope 
exchange due to mesoscale eddies (Pinot et al. 2002; Bouffard et al. 2010), filaments, and shelf-slope 
flow modifications (Wang et al., 1988; La Violette et al. 1990). The bathymetry also plays a key role in 
controlling the transport between the northern and southern regions (Astraldi et al., 1999) and also 
may enhance sub-mesoscale activity (Bouffard et al. 2012).  
 
The jet that enters the Eastern Mediterranean through the Straits of Sicily (the Atlantic Ionian 
Stream, AIS) usually follows the southern coast of Italy and the western coast of Greece (Robinson 
and Golnaraghi, 1994). Recent studies (e.g., Borzelli et al., 2009; Gacic et al., 2010) have shown that 
during certain periods the AIS can follow a more southerly pathway when the overall northwestern 
Ionian circulation switches from anticylonic to cyclonic. According to the POEM results (e.g., Robinson 
and Golnaraghi, 1994;  Malanotte-Rizzoli et al., 1999) the AIS continues primarily as the eastward 
flowing Mid Mediterranean Jet which meanders through the center of the Levantine Basin. However 
it may also feed into the eastward flowing Libyo-Egyptian Current, which flows along the coast of 
North Africa (Alhammoud et al., 2005; Hamad et al., 2005; Millot and Taupier-Letage, 2005). That 
current generates baroclinically unstable mesoscale eddies that dispatch AW offshore (Gerin et al., 
2009). The AW flowing along the Egyptian slope turns north following the coasts of Israel and 
Lebanon, and then turns west following the coast of Turkey as the Asia Minor Current (Oszoy et al., 
1993). Based on ten years of extensive current measurements, Rosentraub and Brenner (2007) found 
that over the shelf and slope of Israel, the flow through most of the year is directed northward, 
following the bathymetry, with strong currents of nearly 50 cm/s in both winter and summer. The 
current meanders and forms anticyclonic eddies, which drift westward and transport shelf water to 
the open sea. In the near bottom layer at the shelf break the authors found evidence of a net seaward, 
cross shelf flow. 
 
Understanding DSWC's interaction with bottom morphology is a theme of paramount relevance. 
These energetic cascades, lasting up to few weeks, are considered one of the main drivers at the 
oceanic margins. During DSWC events, cold, dense shelf waters spill over the shelf edge and flow 
along topographic features as a bottom-trapped gravity current. Upon reaching the level of neutral 
density they spread laterally. Of the 61 confirmed cases of dense water cascades around the globe 
(e.g., Ivanov et al., 2004), three occur in the Mediterranean. Over the broad northern Adriatic shelf 
the North Adriatic Dense Water (NAdDW) forms in the area exposed to the cold, dry Bora winds 
during the winter. One branch of NAdDW flows southward with a vein-like shape reaching the shelf 
break, while a second branch enters the Jabuka pit, from where the spillover can reach the Bari 
Canyon and the South Adriatic Pit. The cascading water is diluted by entrainment of ambient water 
masses. While DSWC in the Northern Adriatic or at the northern side of the Cretan arc does not play a 
direct role in the exchange with the open sea, it is nevertheless important since this process is crucial 
for the formation of the dense deep water that eventually fills the Eastern Mediterranean. Over the 
Gulf of Lions shelf DSWC does not occur every year, but if so, it can reach the bottom (Dufau-Julliand 
et al., 2004; Palanques et al., 2009; Pascaual et al., 2010 and references therein) and can be an 
important source of deep water along with that formed by open sea convection. 
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Specific issues 
 
An important step forward towards further the understanding of both phenomena described above will be to 

develope an integrated approach that combines model simulations and observations, designed to address 

the multiscale processes and to assess the associated forcing. Both phenomena are complex and highly 

nonlinear and are not easily amenable to either observations or modeling alone due to the small spatial 

scales involved and the intermittent or episodic nature of the processes. The models need to be run at 

sufficiently high resolution and be tuned to address the processes of interest. To be effective, the field 

measurements must make use of ongoing observational programs and networks, but must also build on a 

series of targeted campaigns. Overall, the future research activities should shed light on (1) the dynamics of 

the shelf break jet, front, and associated mesoscale and submesocale processes, and (2) the precise 

conditions needed for dense water formation over the shelf and the processes that determine the eventual 

fate of this water. It will be necessary to develop a capability to model these events with sufficient fidelity 

so that the resulting models can be used for further process studies and prediction.  

 

1. Meandering coastal currents, fronts, and eddies 

The establishment of ocean observing networks is being adopted as an important component of 
marine strategy by many countries with economically significant coastal areas.  These new facilities 
are delivering new insight into coastal and open ocean variability. They also contribute to a more 
science-based and sustainable management of the coastal area. In the Western Mediterranean, 
MOOSE (Mediterranean Ocean Observing Site for Environment) and SOCIB (Balearic Islands Coastal 
Observing and Forecasting System), are two examples of such networks. SOCIB addresses 
multidisciplinary research on mesoscale and frontal dynamics as a key element in the physical and 
ecosystem variability (Tintoré et al., 2012). It includes multi-platform observations and modeling 
services distributed through an integrated system. Such information, when used in synergy with 
satellite observations, will be particularly helpful for societal benefits, and for better understanding 
of 3D biogeochemical (Lévy et al., 2009) and energy transfers (Lapeyre and Klein, 2006) occurring at 
meso- and submesoscales. Similar networks should be established at other select locations in the 
eastern Mediterranean in order to provide continuous, long term measurements. Field campaigns to 
investigate specific aspects of the jet and frontal dynamics should be planned, and very high 
resolution models for specific shelf regions should be developed. Present high resolution models 
used for ocean forecasting typically have a horizontal resolution of 1 km (e.g., Brenner et al, 2007) 
which is barely adequate for resolving the narrow shelf circulation regime. Models should be refined 
and extend far enough into the open sea. Non-hydrostatic models may also be necessary.  
 

2. Dense shelf water cascading 
Dense water formation is primarily a local phenomenon and therefore amenable to study by local models. 

Present models do not have sufficient resolution to capture the small-scale processes responsible for dense 

water formation and entrainment. In particular, turbulent mixing in the water column, driven by surface 

cooling and by tidal and storm-driven mixing near the bottom, is the key to homogenizing the shallow shelf 

waters so that they can be subsequently cooled. Second moment closure (SMC) models of turbulent mixing 

(e.g., Kantha and Clayson, 2007) have enabled more accurate simulation of oceanic mixing processes, 

although there is still room for improvement. Recently, Kantha and Carniel (2009) have refined turbulence 

models of stably stratified flows to allow mixing at all values of the gradient Richardson number. Non-local 

mixing models are the key to accurate depiction of mixing processes dominated by convection, prevalent 

during dense water formation. Water mass preconditioning is crucial to dense water formation and should 

be studied using high vertical resolution, two-dimensional models. The role of tidal and storm mixing are to 

a large extent unknown and should also be clarified. It would also be of interest to know if down- slope 

flow induces visible surface patterns. 

 
Additional aspects in the study of the DSWC events in the Mediterranean region should include: (1) 

numerical simulations of the basin at adequate resolution to simulate the circulation for specific years of 

known DSWC; (2) process-oriented studies exploring the parameter space for dense water formation 

episodes, using models with very high horizontal and vertical resolutions; (3) ad-hoc observational 

campaigns to sample the state of the shelf water; (4) parameterization of dense gravity currents for 
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inclusion in larger scale models; (5) development of turbulence closure models following state-of-the-art 

findings, while addressing the role of tidal mixing in dense water formation and in triggering the cascading 

processes; (6)  investigate the gravity currents near the bottom with a high-resolution numerical model, 

addressing the principal off-shelf sediment transport and evaluating the relative importance of different 

processes in the down-canyon sediment transfer; and (7) investigation of the effect of wind waves on 

mixing in shallow areas of dense water formation, using a coupled hydrodynamic model - wave model. 

 
 
3.3 The role of salinity decadal oscillations in triggering the thermohaline circulation and the 
      Mediterranean conveyor belt. 
 
State of knowledge 

 
         The Mediterranean Sea open circulation cell is driven by the salinity differences between the 
inflowing low-salinity Atlantic Water (AW) and the highly saline Eastern Mediterranean waters, 
mainly the Levantine Intermediate Water (LIW). The salinity differences established between the 
two water masses are maintained due to the prevalence of the evaporation over precipitation. Deep 
closed circulation cells are driven by the air-sea heat losses at specific locations resulting in  vertical 
convection and dense water formation. This average circulation pattern is subject to interannual and 
decadal variability due to both external meteorological and internal forcings. Temporal variability of 
the closed circulation cells is primarily determined by the intensity of the dense water formation, 
which in turn depends on the air-sea heat fluxes and the preconditioning. Deep circulation was 
thought for a long time invariable and on the basis of that the residence time of the Eastern 
Mediterranean was estimated to about 100 years. Recent long term simulations gave evidence that 
the alteration of the two sources of dense waters (Adriatic and Aegean Seas) in the EMED could be a 
recurrent phenomenon, connected to salinity out-of-phase decadal oscillations between the two 
basins (Borzelli et al., 2009), given the necessary intense local atmospheric forcing. The salt content 
in each formation site, along with the intensity of the atmospheric forcing, determines the depth of 
the convection and thus the density of the produced new water. In the early 70s a high-salinity event  
was documented in the Levantine and Aegean, but with lower formation rates and thus without 
significant signature of Aegean dense water in the adjacent sub-basins (Beuvier et al., 2010). 
Theocharis et al. (2002) noted that the 70’s episode was evident in all three basins, Levantine, Ionian 
and Aegean, with a maximum signal in the Levantine. The total volume of the produced waters was 
lower than those during the EMT, thus its effect vanished quickly. 
 

In mid 1990’s, experimental evidence was presented on the Eastern Mediterranean 
Transient (EMT) and it was shown that the abyssal circulation is not in a steady state but can be 
subject of episodic sudden changes (Roether et al., 1996). The EMT involves the passage of the 
Eastern Mediterranean dense water formation site from the Adriatic to the Aegean. This then 
resulted in important changes in the abyssal circulation of the entire basin. Changes were however 
evidenced over the upper part of the water column as well. Generally, the most prominent variations 
in the upper layer circulation have taken place in the northwest Ionian where they not only became 
manifest as the circulation inversion in 1997 reinforced by the EMT, but also as the other two events 
which were documented in 1987 and 2006 (Gacic et al., 2011).  These inversions of the upper-layer 
circulation pattern in the Ionian determine the salt redistribution between the Adriatic on one hand 
and the Levantine/Cretan Sea on the other. This is due to a preferential pathway of the relatively 
fresh AW; in the cyclonic circulation pattern in the Ionian the AW preferential pathway is towards 
the Levantine/Cretan Sea while during the Ionian anticyclonic circulation mode the northern Ionian 
and the Southern Adriatic are subject to freshening due to the increased spreading of the AW 
northeastward. Therefore, the salt content and buoyancy in the upper layers of the Adriatic and 
Levantine/Aegean are out of phase suggesting that one or the other sub-basin is more prone to the 
convective mixing. This suggests that the EMT, i.e. the Cretan Sea undertaking a role of the main 
dense water source for the Eastern Mediterranean, is potentially a recurrent phenomenon if the 
winter air-sea heat losses were strong enough. Important decadal variability in the thermohaline 
properties and the deep circulation were evidenced in the Western Mediterranean as well. Again 
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salinity forcing seems to play an important role since at decadal scale there is important building-up 
of the highly saline water spreading over the entire bottom layer and increasing continuously in 
thickness  since 2004 up to present days. The phenomenon is called the Western Mediterranean 
Transition and can presumably be connected to the inflow of the LIW of varying salinity from the 
Eastern Mediterranean (Schroeder et al., 2009). The replenishment of the deep basin by newly 
formed Western Mediterranean Deep Water that, depending on its density, can either uplift old 
resident waters or lay above them, leaving in any case a cold signature in the temperature series 
(Garcia-Lafuente et al., 2009). This mechanism then determines interannual variability of 
thermohaline properties of the outflowing Mediterranean waters possibly changing their impact on 
the global conveyor belt. 

 
            Finally, Millot et al. (2006) demonstrated that the hydrological changes which were caused by 
the EMT have a clear impact on the outflowing water into the Atlantic Ocean. The Mediterranean 
outflow is a constant source of warm and salty intermediate water, and has been shown to play an 
important role in water formation processes in the Atlantic and hence in the global circulation 
(Candela, 2001). Understanding the interannual variability of the Mediterranean Sea itself  appears to 
have a more global importance than previously thought (Millot, 2007). 
 

Specific issues 

 
1. During the last years there has been put considerable effort in identifying past changes in the water 

mass characteristics of the Mediterranean Sea from historical hydrographic records related to 

salinity oscillations. The investigation of this long-term variability by using historical databases 

such as MEDAR-MEDATLAS, has been proven to be inadequate due to spatial inhomogeneity of 

data and high noise levels (Schroeder et al. in press). Efforts should be made to construct new and 

extend existing datasets for climatic analysis accompanied by coupled atmosphere-ocean 

reanalysis simulations. 

 

2. Moreover, studies about DWF and circulation on decadal and interdecadal scales, must take into 

account the variability of the inflowing AW and in particular its observed increasing salt content 

(Lauzier and Sindlinger, 2009). 

 

3. The salinity oscillations are manifest at a decadal timescale and, as proposed, modulated by 

internal mechanisms, but could also be influenced by the intensity of atmospheric forcing. The 

large scale atmospheric circulation such as the NAO (North Atlantic Oscillation), which largely 

determines Mediterranean winter precipitation (Xoplaki et al., 2003) and EA (East Atlantic) which 

also play an important role over most of the region (Fernandez et al. 2003, Krichak et al., 2002, 

Josey 2010), also exhibit variability in decadal timescales. Therefore it is important to investigate 

combined effects of internal processes and external forcing.  

 

4. The intensity of the EMT compared to similar past events is a major issue. Both the increase in 

salinity and the huge amount of dense waters (8 Sv years, Roether et al., 2007) produced in the 

Aegean were exceptional. Further study is needed to clarify whether the EMT can be attributed to 

coincidence of the salinity preconditioning of the area with intense atmospheric forcing. 

Diagnostic long term simulations give evidence of internal modes of variability even at 

interdecadal timescale (Pisacane et al. 2006). It is important to find out whether the Mediterranean 

as a whole exhibits internal variability modes, similar to or inferred by the decadal oscillations 

evidenced in the EMed.  

 

5. Therefore, it is of great interest to study the variability and trends in the EMED in response to 

climatic changes and improve knowledge about the functioning of internal feedback mechanisms 

and related processes. 

 
Finally, biogeochemical variability in response to circulation changes should be considered as well, 
under the concept of the decadal Mediterranean variability (Civitarese et al. 2010).  
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3.4 Residence times and ventilation of water masses in the Mediterranean sea : implications 
      for dynamical and biogeochemical processes. 
 
State of knowledge 
 
Water mass characteristics, structure and distribution in the Mediterranean, as well as the associated 
circulation patterns, are complex and show significant variability and sensitivity. This can be 
attributed to the complex topography of the basin, the diversity of mixing processes involved, the 
variability of atmospheric forcing at various time scales and the variety of water mass formation 
processes present in the basin. Regional and local observational efforts and modeling studies of the 
Mediterranean and of its sub-basins reveal a complete picture of the water masses structure and 
evolution. Even in the same sub-basin and nearby depressions, water mass characteristics and tracer 
concentrations of the deep waters present a remarkable diversity (Vervatis et al.,2011), while 
significant and sometimes abrupt changes are encountered in the deep and intermediate layers ( 
Roether et al., 1996; Schroeder et al.2010).  
 
If we want to understand the dynamical and biogeochemical functioning of the Mediterranean Sea, 
we need to construct a clear picture of the water mass structure and characteristics, monitor their 
variability and relate it to internal and external forcing mechanisms. Evaluation of the renewal times 
and processes of Mediterranean water masses is crucial for understanding the variability of the 
thermohaline circulation and for investigating the biogeochemical cycles at basin-wide or 
regional/local scales. Using a variety of observational and modeling approaches, the evaluation of 
residence times and the investigation of aging processes of the various water masses can be 
achieved. Specific questions that need to be answered include: 
 

1. What is the temporal and spatial variability of the deep water masses in the 
Mediterranean Sea (physical and biogeochemical) and how it is related to external and 
internal mechanisms? 

2. What is the residence time of the various water masses in the basin and how is this  
connected to external forcing and internal process time scales? 

3. What are the renewal processes of the various water masses and how do they affect 
the ventilation? 

4. What are the important mixing processes related to the stratification of the deep 
layers? 

5. What is the effect of these processes on the biogeochemical cycles of the 
Mediterranean and its sub-basins? 

 
Specific issues 
 

1. Investigation of spatial and temporal variability of deep water masses in the Mediterranean 
Sea, using historical data and modeling reanalysis. 

A series of research projects was devoted to constructing oceanographic databases at the global and 
regional scale. Today a wealth of data exist that can be used for analyzing the spatio-temporal 
variability of physical and biogeochemical parameters in the Mediterranean Sea. Modeling 
techniques and computer power have been greatly improved during the last decades, enabling an 
ever increasing accuracy of results that can be applied at the Mediterranean and sub-basin scale for 
the investigation of long term variability. Blending the two approaches through data assimilation 
procedures can produce useful results for filling spatio-temporal gaps. It is important that an 
additional quality control of existing data collections for, in particular, biogeochemical parameters 



 24 

are performed to ensure that the data sets are internally consistent and that measurement biases are 
removed so that temporal trends can be correctly estimated.  

 
2. Investigation of ventilation processes in water masses and monitoring spatio-temporal 

variability. 
Based on past observations, numerical model techniques and a strategy for observational process-
orientated campaigns, renewal patterns and mixing processes that affect the characteristics and 
ventilation of the water masses can be revealed and explained. Places like deep depressions, straits 
and water-mass formation areas are key sites for understanding renewal processes. Monitoring of 
the spatio-temporal variability can also take advantage of national and international observational 
networks, among which the HydroChanges CIESM Programme 
(http://www.ciesm.org/marine/programs/hydrochanges.htm) deserves special mention. 
 

3. Estimation of residence times of water masses.  
The overall observational and modeling strategy should target the estimation of the residence time of 
the various water masses in the Mediterranean Sea. Simpler and more elaborated techniques (box 
models, GCMs, etc.) can both be applied. In this way, the effects of residence time and renewal 
processes on the physical and biogeochemical cycles can be better understood. Regular measurement 
of transient tracers in the Mediterranean Sea is an important and valuable tool to monitor ventilation 
processes, and any spatio-temporal changes of ventilation.  
 

4. Attribution of renewal processes. 
All the above should be related with the investigation of the relative importance of external forcing 
and internal modes of variability. The imprint of these on the deep water masses is very significant in 
understanding the dynamical and biogeochemical functioning of the Mediterranean Sea 
 
 
3.5 Paleo-climate and past physical/biogeochemical changes in the Mediterranean 
 
State of knowledge 
 
The investigation of marine archives (like sediment cores) provides new and relevant evidence on 
physical and biogeochemical processes, which drove the dynamics of the Mediterranean basin, in 
terms of response to regional/global climate, exchanges with the Atlantic Ocean and internal 
processes at the sub-basin scale. This backward glance could extend our potential to understand the 
deeper physical forces, which presently drive the 3D circulation system of the basin and regulate its 
relationships with the climate system. 
 
So far the existing paleoclimate records provide datasets for different environmental indices 
including: microfaunal abundances (planktonic and benthic foraminifera), microfloral abundances 
(coccolithophores, dinocysts) and pollen. The analysis of stable isotopes and biomarkers/alkenones, 
indicate rich and interesting dynamics in the eastern and western Mediterranean sub-basins in the 
past. 
 
Despite the large amount of existing data, comparison between different records is problematic as 
archives are featured mainly by different time resolution and spatial distribution, while data 
collection is characterized by different methodological approaches. This lack of a systematic 
comparison between the paleoceanographic records inhibits an overall climatic consideration, which 
is an important step to improve our understanding of the physical climate and its variability in 
response to natural and anthropogenic forcing.  
 
Detailed study of the last 20 kyrs of Mediterranean sea dynamics was focused on selected time 
intervals like the transition from the last glacial maximum (LGM, ~20 kyr BP) to the Holocene, a 
distinctive cooling between 13 and 11.7 kyr BP (Younger Dryas), a rather mild climatic period 
between 10 and 6 kyr BP, a warm and wet period within Mid Holocene followed by the abrupt 

http://www.ciesm.org/marine/programs/hydrochanges.htm


 25 

climatic deterioration observed all over the northern hemisphere at 4.2 kyr BP and several cooling 
and warming events during the last 2 kyrs.  
 
As an example of climatic reconstruction, the Eastern Mediterranean circulation experienced a major 
phase of reduced thermohaline ventilation, causing anoxic sediment (sapropel) deposition between 
~ 10 and 6 ka BP (Holocene climatic optimum and S1 deposition). A remarkable interruption, 
centred at  8.2 ka BP and reflecting an invigorated thermohaline circulation, occurred during this 
event in both the Adriatic and Aegean seas, with repopulation of deep-sea sediments by benthic 
foraminifera that had been absent before and after because of the anoxia (De Rijk et al., 1999). The 
8.2 ka BP cooling event was found to be part of a repetitive sequence of rapid climate shifts (Bond et 
al., 1997) that can be recognized also in the Mediterranean sea (Incarbona et al., 2008). The close 
association of these climatic shifts with abrupt changes in bottom water oxygenation and organic-
rich matter (sapropel) deposition makes them uniquely suitable for the investigation of the changes 
in climatic forcing that caused thermohaline shutdowns/restarts. 
 
Climatic reconstruction of the time interval during the last 20Kyr, however, is not simple. This is 
because regional factors, associated with the hydrologic, chemical-physical and climatic features of 
the Mediterranean, largely determine climatic variability (Cacho et al., 2002, Rohling et al., 2002). 
Moreover, despite the fact that currently the deep waters of the Mediterranean are well ventilated 
(Bethoux and Gentili, 1999), the presence of sapropels in the eastern Mediterranean indicates that 
this mechanism has been absent several times in the past. Over the past million years, relatively 
small changes in the Mediterranean water budget had a profound impact on the thermohaline 
circulation of the basin. Many studies have addressed the relationship between enhanced freshwater 
input into the basin at times of summer, insolation maxima in the northern hemisphere and the 
formation of sapropels; enhanced burial of organic carbon in sediments was likely initiated by the 
influx of low-salinity waters which slowed or halted the convective overturning in the eastern 
Mediterranean and reduced deep-water oxygenation (Rohling et al., 2002).  
 
In the western Mediterranean, there is no record of sapropel deposits, but organic-rich, 
nonlaminated layers (ORL) deposit records are available. Although these cannot be considered as 
true sapropels, some paleoceanographic studies dated and correlated eastern Mediterranean 
sapropels (Rohling, 1994) with ORL in the western Mediterranean (Perez-Folgado et al., 2004). 
As the Mediterranean enhances the paleoceanographic and paleoclimatic signals, the basin can be 
used as a laboratory for climate change. This is the time to establish a paleoceanographic comparison 
between the east and the west side of the Mediterranean and evaluate paleoproductivity trends 
related to paleoclimatic events. 
 
Although the analysis of proxy records to study the climate of the past is important, it provides only 
partial information regarding the state of the past ocean and of the processes that regulate it. To 
complete our knowledge, model simulations are necessary. The modelling experiments have first  to 
be validated with observations and can then be used to study the fully realistic, three-dimensional 
ocean dynamics.  
 
The use of simple box models can clarify some mechanisms underlying the variability in the 
circulation of the Mediterranean. These simple models, which include the Stommel’s pioneering box 
model (Stommel, 1961), are useful to study the multiple states of the Mediterranean thermohaline 
circulation (THC) in the different basins as well as the  oscillations between them  
( e.g. the Bimodal Oscillating System, Gačić et al., 2010). An example of such a box model for the 
Eastern Mediterranean THC showing the shift of the deep water formation cell from the Adriatic to 
the Aegean sea has recently been proposed by Ashkenazy et al. (2012). These models, although not 
realistic, provide a conceptual view of the dynamics and of the mechanisms underlying its variability. 
On the other end, hypotheses made by using simple models can be verified by using more complex 
ocean global circulation models  and proxy data. 
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Specific issues 
 

1. Impact of the Atlantic circulation on the Mediterranean THC. 
No investigation exists about how the changes in the Atlantic waters inflowing at Gibraltar 
affect the Mediterranean thermohaline circulation as opposed to changes in surface heat 
fluxes. 
  

2. Analysis of the limiting factors of the past interaction between North Atlantic and 
Mediterranean THC.  
A proto-modern circulation was established in the Mediterranean when the eastern 
connection with the Indian ocean was interrupted ~ 18 million years ago (Sprovieri et al., 
2007). Thereafter, the Gibraltar sill regulated the Mediterranean circulation. In a broad 
sense, the North Atlantic and the Mediterranean can be seen as one connected system, 
whose internal dynamics is modulated by the exchanges at Gibraltar (Artale et al., 2006). 
 

3.  Investigation of the nonlinear behaviour of the Mediterranean circulation. 
The present state-of-the-art numerical climate models are able to provide reasonable 
simulations of the present climate but are  unable to reproduce the rapid transitions from 
one climate state, such as glacial climate, into another such as the present state. These 
transitions are inherently nonlinear and involve the competition and interactions between 
external forcing, such as wind stress and heat/moisture fluxes, and internal dynamical 
mechanisms such as BIOS  (Gacic et al, 2010, see also section 3.6) 

      
4.  Study of the patterns of climate change of the Northern Hemisphere influencing 

Mediterranean climates.  
The available evidence suggests that forced changes in dynamical modes of variability in the 
global ocean, such as the North Atlantic Oscillation (NAO), El Nino-Southern Oscillation 
(ENSO) and the Atlantic Multi-decadal Oscillation (AMO) play a key role in the patterns of 
climate variability in the Mediterranean region and investigations are needed for remote 
times (see also section 3.6) 

 
 
3.6 Short-term and climatic variability in the SST and mixed layer heat budget  over the    
      Mediterranean and effects on the circulation and biota surface concentrations. 
 
State of knowledge 
 
Instrumental records of increasing duration and spatial coverage as well as modeling efforts have 
documented substantial Mediterranean variability on time scales ranging from one day or less to 
decades and more. Part of this variability can be related to known forcing mechanisms, but in many 
cases, the relationship between observed variability and forcing has not been fully understood. 
Variability in the strength and location of local fluxes of heat, moisture and momentum  are reflected  
in changes in the surface fields. Among these fields, the Sea Surface Temperature (SST) is the more 
extensively measured surface parameter and, since it responds directly to the atmosphere-ocean 
interactions, represents a candidate to investigate the space-time surface variability of the 
Mediterranean system. Satellite SST data are available, at least twice a day, since 1982. They have 
been used in a variety of studies  to investigate the surface variability of the Mediterranean from the 
annual and interannual time scales (Borzelli and Ligi, 1999a and b; Marullo et al., 2007; Notarstefano 
et al., 2008; Borzelli, 2008; Borzelli et al., 2009) to the daily SST cycle (Marullo et al., 2011). The 
European Research Network for Estimation from Space of Surface Temperature (ERNESST) and the 
Diurnal Variability Working Group (DVWG) of GHRSST (Group for High Resolution SST)  coordinate 
these research activities.            
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Marullo et al. (2011) used lagged-correlation analysis, multitaper method (MTM) and singular 
spectral analysis (SSA) to reveal the presence of a significant oscillation with period of about 70 yr, 
which is close to the Atlantic Multi-decadal Oscillation (AMO) period. They found that, during winter,  
the Mediterranean SST and the North Atlantic Oscillation (NAO) vary coherently over periods longer 
than about 40 yr, with a confidence limit between 90% and 95%. Over periods longer than 85-100 
years, Mediterranean SST and AMO vary coherently with a confidence limit that exceeds the 95%–
99%.  
 
From the above analysis the question arises whether the Mediterranean sea can be considered a 
component of the entire North Atlantic climate system, taking part in the deterministic mechanism, 
proposed by Dima and Lohamnn (2007), based on the interaction between atmosphere, ocean and 
ice. Furthermore, the system composed by the North Atlantic, the Mediterranean sea/Gibraltar strait 
(Artale et al, 2006) and the Arctic sea/Fram strait might work as a unique oceanographic entity, with 
the physical processes within the straits determining the exchange of the fresh and salty waters 
between the marginal seas and the open ocean (Sannino et al., 2009). The analyisis of the 
Mediterranean SST variability alone, however,  cannot provide a full answer to whether the forcing of 
the observed multi-decadal signal has an atmospheric origin or it is determined by changes in the 
Mediterranean Thermohaline Cell (THC).  
 
Coupled ocean-atmosphere models could contribute to answering this question and to investigating 
the origin of the Mediterranean multi-decadal oscillation, separating the contributions of the 
atmosphere and of the Mediterranean THC.  
 
A very important link exists between  SST and the heat content of the surface mixed layer with the 
phytoplankton distribution. The variability of the mixed layer temperature is governed by the heat 
equation which includes horizontal advection of the mean and eddy components and the 
entrainment at the base of the mixed layer. The heat equation is forced by the heat budget at the air-
sea interface minus the short wave radiation (SWR) not absorbed within the mixed layer. The 
portion of SWR absorbed within the mixed layer depends on the value of a diffuse attenuation 
coefficient for solar light. Several formulations are available to estimate the latter one, such as the 
one proposed by Foltz et al. (2003). The diffuse attenuation coefficient  depends on the 
environmental conditions, being a measure of the water turbidity caused by the presence of 
suspended sediments and/or biological components. For the open sea, phytoplankton is the main  
factor determining this coefficient. Morel et al. (2007) proposed an empirical equation to determine 
its value from chlorophyll concentrations, obtaining a relationship that directly links the chlorophyill 
concentration to the percent of absorbed solar radiation in the mixed layer. As an example of such a 
calculation,  consider a typical April condition in the northwest Mediterranean when the mean mixed 
layer depth is typically between 15 and 30 m, with a mean incoming SWR of 200 W/m2 and 
chlorophyll concentrations ranging from 1 to 0.1 ng/m3 inside and outside the most productive area. 
The SWR contribution to the mixed layer heating would be 180 and 160 W/m2 for the two regions 
respectively (D’Ortenzio et al., 2005). This example emphasizes the importance of including the effect 
of biota concentrations in determining the mixed layer thermodynamics. 
 
Specific Issues 
 

1. Changes in the Mediterranean thermohaline cell take place over time scales of the decade. 
Can these changes be recognized in long series of the SST? 
 

2. Atlantic indices are coherent over multi-decadal time scales with oscillations of the 
Mediterranean SST field. Can variability over these time scales of the SST field modulate the 
Mediterranean thermohaline cell? 
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3. Is there a feedback between changes in the Mediterranean thermohaline and multidecadal 
variability of the SST? 

 
4. From the energetic point of view :Which is the energy reservoir that sustains oscillations in 

the Mediterranean SST field? 
 

5. The Mediterranean is a negative basin, in the sense that evaporation exceeds precipitation 
and river run-off. In this basin dense water is formed. During dense water formation 
episodes energy is released from the ocean to the atmosphere. Is there a physical  
mechanism to replace this energy (wind forcing, heat fluxes, boundary conditions at 
Gibraltar, etc.) or is the energy lost from the ocean to the atmosphere? 

 
6. Are there specific mechanisms to transform energy from thermodynamical to mechanical 

form? In case there are, do they leave their signature on long series of SST data? 
 

7. What is the impact of the variable phytoplankton concentration on the heat content 
variability of the Mediterranean mixed layer? 

 
 
3.7 The carbonate system in the Mediterranean 
 
State of knowledge 

 
The characteristics of the Mediterranean Sea are such that it has the potential to sequester large 
amounts of anthropogenic CO2, Cant. The buffer capacity of the Mediterranean Sea is particularly high 
due to the high alkalinity and temperatures throughout the water column. Furthermore the active 
deep overturning circulation is effective in transporting the atmospheric imprint on the carbon cycle 
to the interior of the Mediterranean Sea.  In fact, the column inventories of Cant are higher in the 
Mediterranean than anywhere else in the world ocean (Schneider et al., 2010), and the Cant storage in 
the Mediterranean is a significant portion of the global anthropogenic emissions of CO2. However, the 
carbon observations in the Mediterranean are so scarce that it is difficult to quantify the sink of 
anthropogenic carbon in the Mediterranean, and to quantify changes in the carbon cycles. 
 
The last few decades have seen dramatic changes in the circulation of the Mediterranean Sea. This is 
manifest among other features as a shift of deep water formation from the Adriatic to the Aegean 
Seas, and back again to the Adriatic being more important for deep water formation. The deep water 
formed from these two sources has different properties of salinity and temperature and different 
biogeochemical signatures. Very little is known about how the recent changes in the Mediterranean 
overturning circulation have affected the storage rate of Cant. 
 
The increasing inorganic carbon content of the Mediterranean sea leads to changes in the carbonate 
system, such that the concentrations of the carbonate ion decreases and the pH decreases.Even 
though the pH of the Mediterranean is high in comparison to the world ocean, it is possible that these 
changes in the carbonate system can impact the ability of certain groups of marine organisms 
(e.g. coccolithophores) to thrive. Changes in the community structure as a direct effect of the 
changing carbonate system are conceivable. 
 
Scientific questions that need to be addressed by observations of the carbonate system in the 
Mediterranean Sea include: 
    
1. What are the distributions and controls of natural and anthropogenic carbon (both organic and 

inorganic) in the interior of the Mediterranean Sea? 
- Key areas for CO2 penetration in the Mediterranean Sea  
- Evaluation of the role of the intermediate and deep water formation areas 
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 - Evaluation of the impact of shelf events (flood, storms, shelf water formation). 
2. How does the interior carbonate system change over time? 
3. How does this relate to increasing atmospheric CO2 concentrations and changing climate, i.e. 
    to the relation between anthropogenic and natural forcing ? 
4. What is the air-sea flux of CO2 in the Mediterranean Sea; on an annual and seasonal basis for the 

different sub-basins.  
5. What is the inter-annual to inter-decadal variability of pCO2 in the Mediterranean Sea? 
6. Which is the most appropriate method (within the existing) of anthropogenic carbon content 

calculation in the Mediterranean Sea ? 
7. What is the quantity of anthropogenic carbon exchanged through the Strait of Gibraltar? 
8. How do surface changes connect with the interior ocean? 
 
Specific issues 
 
1.Observations of the interior ocean carbonate system on a regular basis on selected hydrographic 
sections. 
This concept has been presented in some detail in the latest CIESM Monograph  (CIESM, 2012) which 
proposes a program, called Med-SHIP (MEDiterranean Ship-based Hydrographic Investigation 
Program) for repeat hydrography in the Mediterranean Sea. Currently, ship-based observations is the 
only means of obtaining reliable carbonate data of the interior ocean of sufficient high accuracy for 
determining temporal variability. This is particularly true for the regions of the Mediterranean Sea  
deeper than 2000 meters, i.e. the maximum depth of the present day Argo floats. As described above, 
there are large amounts of anthropogenic carbon contained at all depths of the Mediterranean Sea. 
The MED-SHIP concept relevant for interior carbon data is based on zonal and meridional sections in 
the Mediterranean Sea repeated on regular intervals; more frequent for the meridional sections than 
for the zonal section. This could be the corner stone in an observational program for interior ocean 
carbon in the Mediterranean Sea.  
 
2.Regular observations of surface pCO2 on ships of opportunity.  
Observations of pCO2 on commercial vessels (cargo ships and ferries) that regularly crosses the 
oceans is a well proven and useful concept. However only a limited number of surface pCO2 

observations are available for the Mediterranean Sea, although time series like the DYFAMED site 
south of France provide important long time information.  
Installation and operation of pCO2 system on a number of commercial vessels would be very useful to 
understand the air-sea flux of CO2, and its spatial and temporal variability. Ideally, these 
measurements should be coupled with measurements of additional biogeochemical variables 
concurrently, to help establishing the forcings in the CO2 variability.  
 
3.Attribution of observed variability and trends to processes 
The understanding of processes responsible for observed trends and variability is important and is 
probably best undertaken with the help of some modeling scheme, data assimilation or inverse 
method. Observations and modeling efforts need to go hand in hand and will benefit from close 
cooperation between the modeling and observational community.  
 
4.Use of moorings and autonomous platforms 
Information from sensors mounted on gliders, floats and moorings are invaluable for the 
understanding of the temporal and spatial variability. Currently reliable pCO2 sensors are available 
for surface vehicles, such as the wave-rider, and surface moorings. Development of other sensors is 
rapid and any observational program needs to take advantage of additional sensors for a better 
understanding of the total carbonate system.  
 
5.Anthropogenic CO2 invasion into the Mediterranean Sea   
Estimation of the anthropogenic CO2 penetration  in the Mediterranean Sea  using the existing limited  
historical data and the existing calculation techniques. Investigation of a new scheme, appropriate for 
the Mediterranean Sea, for anthropogenic CO2 calculation. 
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4.  Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how 
they affect the sub-basin circulation and property distribution    

 
 

4.1 Formation mechanisms of filaments and eddies in the Mediterranean, their effects on the  

biogeochemical processes of the basin or of some specific areas and their impact on  
physical/biogeochemical exchanges through straits 

 
State of knowledge 

 
Frontal zones, filaments and eddies (FZFE hereafter, ranging from mesoscale (10–100 km) to 
submesoscale (1–10 km) dimensions) are dynamical features with sharp gradients having a large 
effect on circulation and on the distribution of heat, salt and matter in the ocean (Robinson,1983; 
McGillicuddy et al., 1998). It has been shown that they are important routes of the  energy cascade 
and dissipation in the ocean, and of the transport of mass, energy, chemical compounds, flora and 
fauna between water masses by turbulent advection and mixing. Their characteristics and 
distributions play a major role at the basin scale and in the local energetics and circulation.They 
contribute to shaping the spatio-temporal distribution of biogeochemical variables, by creating 
physical boundaries (separating distinct areas of completely different properties from the 
surroundings in the open sea) and by modulating the seasonal evolution (inducing, for example, 
sporadic events). In the coastal areas, they can transport land-based coastal and continental shelf 
material to the open sea and vice versa. 
 
Often the dynamic features created or destroyed by atmospheric interactions as well as internal 
instability mechanisms interact with each other exchanging pulses of physical properties or 
materials that contribute to the synoptic or average state of the ocean. These interactions often go 
down to the small scales of sub-mesoscale filaments and streamers only captured in high resolution 
simulations and by satellite observations. Through energy cascading mechanisms of geophysical 
turbulence some features disintegrate or dissipate, while other small scale features can coalesce to 
become coherent structures that persist for extended periods. 
 
The challenges of characterizing these processes imply precise and high-resolution observations in 
addition to multi-sensor approaches. Accordingly, multi-platform experiments have been designed 
and carried out in the different sub-basins, highlighting the need of synergetic approaches through 
the combined use of observing systems at several spatial/temporal scales. Some exemplar multi-
sensor studies in the Western Mediterranean (Alboran and Balearic basin) are available and reported 
below. 

 

Alboran Basin 
The Alborán Sea plays a crucial role as it represents a transition zone between the Mediterranean Sea and 

the Atlantic Ocean.  The Atlantic water flows into the Alborán Sea at the surface through the Strait of 

Gibraltar and generally forces two anticyclonic gyres, the WAG and EAG (La Violette, 1984; Allen et al., 

2001). The combination of satellite altimetry with independent in-situ data has demonstrated the benefits 

for improving our knowledge on mesoscale dynamics. Ruiz et al. (2009b) reported the first attempt to 

combine high-resolution  (~0.5 km) hydrographic observations using the new glider technology and 

altimetry measurements to quantify vertical exchanges in an area with intense horizontal density gradients. 

By autonomously collecting high-quality observations in three dimensions, gliders allow high-
resolution oceanographic monitoring and provide useful contributions for the understanding of 
mesoscale dynamics and multidisciplinary interactions (e.g., Hodges and Fratantoni, 2009). However, 
isolated measurements from fleets of gliders are not sufficient, as, glider measurements remain 
scarce, both in space and time for many small scale processes. That is the main reason why a multi-
sensor approach that combines such in situ sampling and remote-sensing measurements should be 
suited to advance our knowledge on mesoscale features. The experiment carried out by Ruiz et al. 

(2009a,b) was designed to be coincident with an OSTM/Jason-2 passage in the Eastern Alborán Sea. Using 
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the quasi geostrophic dynamics (Hoskins et al. 1978), they reported vertical velocities of about 1 m day
-1

 , 

partially explaining an observed subduction of chlorophyll. More recently, Navarro et al. (2011) analysed 

the coupled patterns of variability between satellite altimetry and chlorophyll data in the Alborán Sea. They 

demonstrated that the pelagic ecosystem in the Alborán Sea is controlled by the inverse barometer effect 
 (first mode). They also show that the distribution of chlorophyll-rich and poor areas of can be explained by 

the second mode. 
 
Balearic basin 
The Balearic sea is a key sub-basin of the western Mediterranean due to its strategic location 
separating the Gulf of Lions in the north and the Algerian Basin in the south, playing a major role in 
the north-south exchanges. The general surface circulation (Font et al.,1988) is controlled by the 
presence of the Northern Current flowing southwestward along the continental slope until it either 
exits into the basin through the Ibiza channel (Pinot et al., 2002), or retroflects cyclonically over the 
insular slope forming the Balearic Current (Pascual et el., 2003). It is also characterized by frontal 
dynamics near the slope areas: mesoscale eddies have been found to modify not only the local 
dynamics but also the large-scale patterns, as shown by Pascual et al. (2002)  in a detailed study of 
the blocking effect of a large anti-cyclonic eddy, as well as a clear influence of the basin circulation on 
the phytoplankton biomass (Jordi et al.,2009). 
 
In a recent work, Ruiz et al., (2009a) provided first positive insights concerning the use of 
autonomous underwater vehicles (gliders) in synergy with altimetry in order to monitor dynamics in 
the Balearic Sea. Bouffard et al., (2010) developed innovative strategies to characterize horizontal 
ocean flows, specifically in terms of current velocity associated with filaments, eddies or shelf-slope 
flow modifications close to the coast. This methodologies were applied to a series of glider missions 
carried out almost simultaneously and well co-localized along the satellite tracks, as part of a pilot 
initiative lead by IMEDEA  (CSIC-UIB). In this context, Pascual et al. (2010) showed that the high-
resolution hydrographic fields from the gliders combined with coastal altimetry revealed the 
presence of permanent and non-permanent signals, such as relatively intense eddies. Moreover, the 
almost synoptic view from altimetry and SST images during the glider missions provided a more 
detailed picture of regional small-scale features.  
 
Since January 2011, a new sustained observational program in the Balearic Channels is being 
conducted by IMEDEA(CSIC-UIB) and SOCIB, the new Balearic Islands Coastal Observing and 
Forecasting System (Tintoré et al., 2012). This monitoring program consists of repeated transects 
between Mallorca, Ibiza and Denia. During 2011, 7 glider missions have been successfully carried out 
in the Ibiza Channel reporting an unprecedented spatial and temporal variability in transports 
(Heslop et al., 2011) compared to the literature values (Pinot et al., 2002). These new findings will 
have relevant consequences to improve our understanding of local ecosystem changes, as it is known 
that the variability of Atlantic Water through the Balearic Channels is critical for the understanding of 
Bluefin Tuna spawning south of the Balearic Islands (Alemany et al., 2010). The combination of glider 
data with information from other platforms (satellite, ships cruises, high frequency radars and 
buoys) will support the investigation of unresolved scientific questions such as mesoscale, seasonal 
and inter-annual variability of the water exchanges in the Ibiza and Mallorca Channels. In a near 
future, the worldwide challenge of (sub)mesoscale dynamics characterization will have to be 
addressed through an integrated approach combining both observations and numerical simulations. 
 
Eastern Mediterranean and Levantine Basin 
Multi-scale interactions are  especially relevant for the eastern Mediterranean, where coherent 
eddies either reinforce or block seasonal circulations, divert or entrain water masses of contrasting 
properties and indirectly contribute to inter-basin transports (Feliks and Itzikowitz, 1987; 
Malanotte-Rizzoli et al., 1999; Zodiatis et al., 2005). In the Levantine basin  fast current systems 
known as the Mid-Mediterranean Jet and the Asia Minor Current ( Robinson et al.,1991, 2001) bear 
the energy that can sustain unstable FZFEs or evolve into long-lived features such as the Iera-Petra, 
Antalya and Shikmona eddies. Interaction among various eddies along the Asia Minor Current, from 
their genesis to decay, have often been observed in great detail (Onken and Yuce, 2000; Hamad et al., 
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2005, 2006). Modified Atlantic Water propagating from the west and the Levantine Intermediate 
Water created through convection events are entrained and transported by these eddies and jets and 
exchanged by FZFE interactions (Özsoy et al., 1989,1991,1993; Sur et al.,1992; Lascaratos and Nittis, 
1998). 
 
The abundance and chemical composition of nutrients and particulate organic matter in the euphotic 
zone of the cyclonic/anticyclonic eddies and across frontal zones have great spatial and temporal 
variability (Özsoy et al., 1993; Ediger et al., 1999, 2005), with consequent impacts on the productivity 
(Salihoğlu et al.,1990; Bingel et al.,1993; Yılmaz and Tuğrul,1998).Increases in algal biomass (Chl-a) 
are observed especially on shelf zones where rivers supply nutrients. This also occurs on the Rhodes 
cyclonic gyre and its peripheral front during Winter and the following early Spring because of the 
nutrients supplied by deep Winter mixing, upwelling and lateral entrainment processes. The surface 
and deep chlorophyll maxima formed near the base of the euphotic zone depend on light and 
biochemical variability imposed by FZFEs (Yılmaz et al.,1994; Yacobi et al.,1995; Ediger et 
al.,1996,2005). 
 
Specific issues 
 

1. Characterization of the importance of frontal zones, filaments and eddies (FZFE) in various areas 

of the Mediterranean Sea, using remote sensing and modeling results.What is the spatial and 

temporal variability of the FZFE distribution and energetics, how are they affected by the 

atmospheric forcing and interaction with topographic features and how deterministic is this 

distribution? Thermal NOAA/AVHRR satellite images were used to identify sites of highest 

frequency in cold filaments in the Mediterranean Sea (Bignami et al., 2008). Satellite altimetry and 

ocean color data and modeling techniques can be also used to characterize the population and 

energetic of these features. 

 

2. FZFE require horizontal and vertical redistribution of vorticity. The physical mechanisms 

underlying this redistribution are several (i.e. baroclinic instabilities, bottom discontinuities, wind 

field) and determine the characteristics of the FZFE (i.e. characteristics length and time scales of 

variability along with duration of the phenomenon).What are the physical processes involved in the 

FZFE generation and interactions in the open sea and in coastal areas of the Mediterranean basin? 

What relationships or differences exist between surface signatures and deep structures of FZFEs? 

What differences do they have in different parameter regimes and regions ? 

 

3. What is the FZFEs role in the basin-wide and local energy budget of the Mediterranean Sea? How 

do the multi-scale interactions transfer and partition this energy at different scales? In which way 

does the energy transfer occur from mean currents to the FZFEs? 

 
4. Which instability conditions or forcing mechanisms are responsible for the generation and decay of 

FZFEs? How stable are the latter ones once generated ? What are their typical life histories ? What 

are the conditions that either lead to long life spans or rapid disintegrations of these features ? 

 

5. Characterization of the transport patterns using satelite altimetry and Lagrangian numerical 

analysis. Studies were performed in the open sea, also in the Mediterranean (d’Ovidio et al., 2004). 

Recently, this methodology was adapted to the coastal area using in situ observations to correct for 

the uncertainties connected to satelite altimetry data close to shore (Nencioli et al., 2011). These 

patterns are important to predict the distribution and transfer of characteristics and matter between 

areas. 

 

6. The Mediterranean basin is characterized by very complex topography, including a    complicated 

strait system that constrains (or sometimes controls) the exchange flow and sub-basin dynamics. 

FZFEs interact with the complex topography (mid-basin ridges, shelf zones, steep continental 

slopes, canyons and headlands, island arcs) and can affect shelf-open sea exchanges and strait 

fluxes. Questions: What is the role of Mediterranean complex topography in the FZFE dynamics 
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and variability? What is the role of these features in the exchange flows in the various straits of the 

Mediterranean Sea and can they influence/control the fluxes at various time scales? 

 

7. Satellite images have revealed a connection between FZFE and surface phytoplankton biomass 

(chlorophyll) in the Mediterranean Sea, while the impact of FZFE on the horizontal distribution of 

chemical parameters and plankton composition was observed at some areas studied by 

conventional methodology (bottles, nets).  Can we have “pictures” of the chemical and biological 

(other than chlorophyll) distribution at basin scale that could reveal the influence of FZFE? Which 

is  the relative role of the FZFE versus the large scale driven forcing mechanisms (i.e. seasonal 

overturning) on the spatio-temporal distribution of the Mediterranean chemical and biological 

parameters?  Do FZFE affect similarly the chemical and biological parameters distribution in the 

entire Mediterranean Sea e.g. are there differences between Algerian and Cyprus anticyclonic 

eddies? Questions 1 and 3-4 relate to the surface only, that is accessible to satellite imagery. The 

following questions refer to the deeper layers.  

 

8. Once the FZFE areas are identified from their surface signature, how deep are the structures? Is the 

penetration depth constant or seasonal and area dependent? Is the penetration depth a function of 

the strength and character of the physical forcing causing the FZFE? 

 

9. FZFE play an important role in the redistribution of chemical elements at horizontal and vertical 

scales; at the boundaries it is possible to observe increases or decreases in the concentrations of 

chemical compounds. Similar influence is observed at some FZFE areas of the Mediterranean Sea. 

To what extent these chemical compounds can be used as passive tracers of the vertical and 

horizontal currents associated with FZFE? And, whenever these compounds would be identified, 

how could these tracers provide us with information on the physical processes sustaining the 

FZFE? In a recent study, Niewiadomska et al. (2009) use gliders equipped with optical 

biogeochemical sensors to detect upwards and downward motions not easily detected by direct 

measurements. 

 

10. It has been found that, in some Mediterranean areas, FZFE affect the distribution of plankton 

biomass and community composition either directly, due to the physical characteristics (e.g. 

salinity and temperature boundaries, convergence or divergence processes), or indirectly, through 

the influence on the chemical parameters (Fiala et al., 1994; Van Wambeke et al., 2004; Riandey et 

al., 2005; Siokou-Frangou et al., 2009, among others). Do other FZFE areas of the Mediterranean 

Sea present similarly differentiated plankton distribution? Can the FZFE cause patchiness in the 

biomass distribution and if so, can we identify areas more likely to have this patchiness? How 

different is the picture of the phytoplankton biomass distribution at 50m depth from the picture 

obtained by satellite images and if appreciable, can it change our estimation of the entire basin 

production? Are the recently observed deep layers of diatoms assemblages related to eddies 

(Crombet et al., 2011) and do they occur in other FZFE areas of the Mediterranean Sea? Which 

could be their contribution to the estimation of primary production of the entire Mediterranean Sea 

and to the carbon flow towards higher trophic levels through mesozooplankton? An increase of the 

estimated primary production in the Mediterranean Sea could answer the question of the apparently 

high yield of fisheries compared to the low primary production (Estrada, 1996). 

 

11. Very thin layers of plankton (on the order of centimetres to few meters) are found in stable 

stratified water columns, as those characterizing frontal areas, especially those with convergent 

processes (Sullivan et al., 2010).Can we find such thin layers in the Mediterranean? What areas 

would be more likely to have them? If we find those thin layers, how important are they for the 

productivity of the Mediterranean? How will they change the nutrient and C budget calculations for 

the Mediterranean? Are they characterized by different species composition, being able to use to 

their advantage the different physical and chemical environment? Recently, it was hypothesized 

that thin layers of diatoms may be present at specific areas of the Mediterranean (Crombet et al., 

2011). 
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4.2 On the role of surface forcing in the shelf/slope circulation 

  

State of knowledge 

 
The Mediterranean Sea is a region in which air-sea interaction plays a crucial role in shaping both the 
atmospheric and oceanic circulation. For the sea, the main components of the surface forcing are: the 
wind stress, the surface heat flux, the direct surface fresh water flux (evaporation minus 
precipitation), and the terrestrial based water flux in the form of runoff and river discharges. While 
early modelling studies of the Mediterranean used relatively coarse horizontal grid resolutions of 
~25 km (e.g., Roussenov et al. 1995; Zavatarelli and Mellor, 1995), more recent studies have used 
higher resolution grids which are nearly eddy-resolving (e.g., ~10 km in Beuvier et al., 2010) and 
even eddy resolving (~7 km in Tonani et al., 2008). Other studies of sub-basins (e.g., Lascaratos and 
Nittis, 1998) have also used eddy resolving grids (~ 5 km) for process studies such as LIW formation. 
These studies show that a model with a reasonable spatial resolution is able to reproduce circulation 
features of basin-scale, sub-basin scale and mesoscale in agreement with the small Rossby radius of 
deformation for this sea. However, the common feature of these and other studies is that the surface 
forcing fields have been extracted from large scale climatological or reanalysis data sets in which the 
horizontal resolution is at best on the order of 50-100 km. In most of these studies, the temporal 
resolution of the forcing was also relatively coarse (daily or longer), with the exception of Tonani et 
al. (2008) who used 6 hourly data.  
 

While these studies indicate significant progress in understanding the circulation of the 
Mediterranean, it is clear that these models and the associated forcing are not able to adequately 
resolve the fine details of the shelf and slope regions, which are relatively narrow (typical width of a 
few tens of kilometers). As discussed by the Chelton et al. (2004), small-scale features in ocean winds, 
as well as the influences of the coastal and island orography on the wind stress curl and divergence 
are observed from the 25-km horizontal resolution of the wind stress from the Quickscatt 
radiometer. Such features, even at smaller scales (of about 1 km) are of great importance for the 
Mediterranean Sea and its adjacent basins, where orography and coastal geometry influence the 
wind pattern. The effects of these small-scale variations have long been recognized in controlling the 
wind driven circulation in the Adriatic Sea. Recent studies of the role of Bora wind events forcing the 
circulation in the northern Adriatic have demonstrated the importance of sufficiently high resolution 
in the observations (Lee et al., 2005) and models (Cushman-Roisin and Korotenko, 2007) for 
understanding the sea's response to the fine-scale atmospheric forcing. These studies also 
demonstrate the complex interaction that can occur in the shelf zone due to the combined effects of 
wind forcing and river discharge.  
 
Another important process that occurs in the northern Adriatic is the formation of dense water by cooling 

and/or evaporation. It forms on the broad, shallow northern shelf (generally shallower than 50 m) which is 

exposed to cold, dry air flowing down from the Dinaric Alps during the winter. The resulting intense 

cooling (as much as 1000 W/m
2
) produces dense water (11 °C, 38.5 psu), which spills over the shelf edge 

and then flows along the Italian coast as a gravity current all the way to the Mid Adriatic Pit, South Adriatic 

Pit and the Bari Canyon. In the South Adriatic Pit particularly it mixes with the Levantine Intermediate 

Water (LIW) flowing cyclonically around the Pit before exiting to the Ionian Sea through the Otranto 

Strait, both as a shelf vein or a slope vein mixed within the Adriatic Deep Water (Zoccolotti and Salusti, 

1987; Manca et al., 2002). Bignami et al. (1990) observed the cascading dense waters at the Bari canyon in 

October 1987 and estimated the transit time from its formation in the north to its arrival in the Bari canyon 

to be 4-5 months. Such dense-water formation events are episodic in nature and this, combined with their 

small spatial scales, makes them difficult to observe. Based on observational evidence from 1981, 1987 and 

1999, Vilibic and Supic (2005) found that the reduction of river discharges in the months preceding dense 

water generation is a precondition for North Adriatic Dense Water (NAdDW) formation. The reduced river 

discharge may also permit LIW to penetrate to the northern Adriatic and bring highly saline water masses 

which when cooled sufficiently can form very dense water that is capable of cascading into the interior. In 

any event, sustained cooling by severe Bora outbreaks during the November-January time frame is 

necessary to cool the water column and form the dense NAdDW. In addition to the convective mixing 
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driven by air-sea heat loss and evaporation, the tidal mixing at the bottom as well, as mixing from wind-

driven waves may also play a role in triggering the cascading process. 

In other basins of the Mediterranean a strong current usually flows along the bathymetry near the 
shelf break or over the slope. In the western Mediterranean, the Algerian Current meanders along the 
North African coast and often generates coastal eddies due to baroclinic instability (Millot, 1985) 
while the Balearic Basin in the northwestern Mediterranean is also characterized by frontal 
dynamics and shelf-slope exchanges, in terms of mesoscale eddies and filaments (e.g., Bouffard et al. 
2010). In the eastern Mediterranean the coastal, baroclinicly unstable Libyo-Egyptian Current 
generates mesoscale eddies that modify the pathway of Atlantic Water, dispatching it offshore (Gerin 
et al., 2009). Along the eastern boundary of the Levantine Basin, the northward flowing shelf break 
current (Rosentraub and Brenner, 2007) also meanders, generating coastal eddies which drift out to 
the open sea, and occasionally separates from the shelf break (Brenner, 2003). All of these current 
systems are an integral part of the general circulation of the Mediterranean Sea and play an 
important role in shelf-open sea interaction. The contribution of the high resolution and high 
frequency surface forcing is not well understood and warrants further investigation.   
 
Specific issues 
 

1. While it is clear that high spatial and temporal resolution surface forcing is important for 
properly simulating the ocean response in terms of mesoscale dynamics in the various basins 
and sub-basins of the Mediterranean Sea, it is crucial also for understanding the fundamental 
processes of the shelf and slope zone circulation. Remotely sensed winds on a continuous basis 
(with no interruptions due to the termination of the satellite mission) with at least a daily time 
step would be a valuable source of information on the synoptic wind patterns over the 
Mediterranean. This kind of data should be complemented with data from a coastal network 
which should fill the gap near land (15-30 km, Bourassa et al., 2010) where the satellite remotely 
sensed winds are not available. Moreover, there is a need of the atmospheric forcing with 
adequate temporal resolution from in situ observations at platforms such as 
buoys/moorings/drifters, located in the offshore regions, especially where wind driven 
eddy/gyre systems are observed. Ideally, the remotely sensed wind data should be integrated 
with the data from autonomous self recording and transmitting platforms with meteorological 
sensors moored in the regions of the shelf/slope interaction. Such instruments can provide the 
local meteorological conditions that cannot be remotely sensed with a sufficient temporal detail 
and duration.  
 

2. This approach should also be applied to regions where other important oceanic phenomena occur 

as response to the local forcing, or dense water formation (Gulf of Lions, Southern Adriatic, and the 

Southern Aegean). For example, Vilibic and Supic (2005) suggest that the importance of the 

preconditioning phase in NAdDW formation needs to be studied by examining the specific years in 

which NAdDW formation has been observed and documented. They also suggest investigating the 

precise location(s) of NAdDW formation and spreading in the northern Adriatic using more realistic, 

high resolution surface forcing based on observational data and model simulations. The same 

conclusion was reached by Signell et al. (2005) when assessing the relevance of high resolution 

meteorological models in the Adriatic. 

 
3. The use of high-resolution regional atmospheric models for downscaling of the surface   
forcing  is a promising approach (e.g., Cushman-Roisin and Korotenko, 2007; Beuvier et al., 
2010). The logical next step would be to develop a high resolution, multi-decadal, regional 
reanalysis data set. In this respect, close cooperation with the operational ocean forecasting 
community would be important since regional atmospheric models are routinely  used to force 
the nested sub-basin and shelf scale models in the Mediterranean Operational Oceanography 
Network (MOON, http://www.moon-oceanforecasting.eu). However, in order to make long-
term surface forcing data sets reliable and useful, care must be taken to implement good quality 
control and to ensure consistency of the data. 
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