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1 Introduction

The growth of wind-driven surface waves due to energy transfer from wind to wave was studied
by Miles (1957). His analysis shows that the critical-layer dynamics play an important role in the
growth of wind waves. The critical layer is located in air surrounding the critical height at which
wind speed matches the wave speed. An initially small surface wave can grow exponentially as it
draws energy from the wind.

Reutov (1980) studied the nonlinear effect in the wind-wave interaction by considering a plane
wave that propagated along the downwind direction. However, the predicted maximum wave steep-
ness was too small for the theory to be relevant for the ocean wave growth, as he pointed out.

Unlike the plane wave, the nonlinear interaction of oblique wind waves can enhance their growth
rates as shown by Lee & Wundrow (2011) and Lee (2012). The nonlinear interaction between a pair
of oblique wind waves of the same streamwise but opposite spanwise wavenumbers was investigated
by Lee & Wundrow (2011). They show that the nonlinear interaction generates a large number of
higher spanwise harmonics. All amplitudes grow very large and eventually become singular at a
finite time.

Nonlinear interactions between two wind-driven oblique surface waves (larger primary wave and
smaller secondary wave with different frequencies) of the same wave speed in the downwind direction
were studied by Lee (2012). Numerical solutions in the inviscid and O(1)-viscosity cases show that
the nonlinear growth rates become much larger than the linear growth rates.

In this study, the nonlinear interaction between two oblique wind waves will be investigated when
the viscosity effect is larger than in Lee (2012). In the quasi-equilibrium critical layer of the present
study, the mean-flow-convection effect is balanced with the viscous effect (instead of the wave-growth
effect as in the non-equilibrium critical layer by Lee 2012).

2 Formulation

The mean flow in air is two-dimensional and there is no mean motion in water. The initial wave
field is composed of a primary and secondary oblique wind waves (propagating obliquely to the
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downwind direction). The secondary-wave amplitude is smaller than the primary one. Initially they
grow exponentially due to the energy transfer from wind by Miles’ (1957) resonance mechanism. A
right-handed Cartesian coordinate system (x, y, z) is attached to the calm-water surface with x in the
streamwise direction of the wind, y in the spanwise lateral direction, and z in the vertical direction
pointing up.

The air and water are assumed incompressible and the ratio of densities is defined as,

ρa/ρw = σ, (1)

where the subscripts a and w denote the quantities of air and water, respectively, and σ � 1
characterizes the small density ratio of air to water.

The velocity potential of a primary wind wave, denoted by the letter P in Figure 1, is proportional
to exp [iαp(x− ct) + iβpy], where αp and βp are its streamwise and spanwise wavenumbers and c is
the wave speed in the streamwise direction. That of a secondary wave, denoted by the letter S, is
proportional to exp [iαs(x− ct) + iβsy]. The first nonlinear coupling between them occurs when the
magnitude of the primary-wave steepness is O(σ3).

The nonlinear interaction between the primary and secondary wind waves generates a difference
mode, which is proportional to exp [i(αp − αs)(x− ct) + i(βp − βs)y] and denoted by the letter D
in Figure 1. The difference mode does not satisfy the free-surface-wave dispersion relation. The
nonlinear coupling between the difference mode and primary wave induces a nonlinear growth of the
secondary wind wave. During this initial nonlinear stage, the growth rate of the primary wind wave
remains linear. This interaction involves two wind-driven surface waves and one difference mode.

3 Amplitude equation

The velocity potential φ̃ in water can be written as,

φ̃ = Ap(t1)φ̂p(z, t1)ei(αpX+βpy) +δAs(t1)φ̂s(z, t1)ei(αsX+βsy) +δσAd(t1)φ̂d(z, t1)ei(αdX+βdy) +c.c., (2)

where c.c. denotes the complex conjugates, i ≡
√
−1, and δ � 1. The quantities of the primary,

secondary and difference modes are denoted with the subscripts p, s and d, respectively. The time
scale over which the wave growth occurs becomes t1 ≡ σt, and the normalized streamwise coordinate
in a reference frame moving with the common wave speed c is given by X ≡ x− ct.

The amplitude equations can be obtained by matching the outer solutions with the nonlinear
critical-layer solutions as,

Ap = ap et̄ As = as eκs t̄ (1− µs e2t̄ )κd , Ad = −a∗sµd
e(1+κ∗s)t̄ (1− µ∗

s
e2t̄ )κ

∗
d , (3)

where t̄ is a re-normalized variable of t1, and ap, as, κs, κd, µs and µ
d

are constants.
Figure 2 shows the evolution of amplitudes when θp ≡ arctan(βp/αp) = 30o and θs = −15o. The

primary-wave amplitude Ap grows exponentially. In the linear stage where t̄ < 3.5, the secondary and
difference modes, As and Ad, also grow exponentially (although the latter is nonlinearly generated).
Once the primary mode amplitude reaches a certain level at t̄ ≈ 3.5, it starts to affect the growth
of the other modes. In the nonlinear-growth stage where t̄ > 3.5, both secondary and difference
amplitudes grow much faster than the exponential ones (before they start to decay). The nonlinear
growth rates near t̄ ≈ 4.5 become very large.

It is worth noticing that the present study (with Lee & Wundrow 2011; Lee 2012) is the first to
show that the nonlinear interaction between three-dimensional fluctuations in air, that are synchro-
nized with oblique surface waves, is responsible for the faster than the exponential growth of wind
waves.
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Figure 1: Three-mode interaction in (α, β) coordinates. Primary and secondary modes are located
on black solid curve that depicts the free-surface-wave dispersion relation with constant c = 10.

−4 −2 0 2 4 6
−20

−15

−10

−5

0

5

10

 

 

t̄

ln
|A

p
,s
,d
|

ln |Ap|
ln |As|
ln |Ad|

Figure 2: ln |Ap|, ln |As| and ln |Ad| vs. t̄ when θp ≡ tan−1(βp/αp) = 300 and θs = −150.
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