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Abstract

A comparison of 1927, 1970 and 2002 bathymetric surveys in the Lagoon of Venice was used to 

reconstruct historical changes in sedimentation. A detailed GIS-based analysis of the charts 
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revealed the timing and pattern of geomorphic changes and allowed calculation of sediment 

deposition and erosion for the entire lagoon and each of its four sub-basins: Treporti, Lido, 

Malamocco and Chioggia.

Two main developments are discernible from comparative observation of the areal distribution of 

the main elevation ranges: the diminution in area of the saltmarshes, which decreased by more 

than 50%, from 68 km2 in 1927 to 32 km2 in 2002, and the progressive deepening of the lagoon, 

with a huge increase in the area of subtidal flats (between -0.75 and -2.00 m depth), from 88 to 

206 km2 during the same period. 

Generally, the lagoon showed a clear-cut change in the most frequent depths (modal depth) from 

a value of -0.62 m in 1927 to -0.88 m in 2002. The deepening of the lagoon affected mostly the 

lagoonal sub-basins south of the town of Venice, where modal depth increased from -0.65 m to -

1.12 m in Lido, from -0.64 to -1.75 m in Malamocco and from -0.39 m to -0.88 m in Chioggia. 

Large changes in lagoonal morphology were caused by human-induced subsidence, the dredging 

of navigation channels between 1927 and 1970, and intense natural erosion enhanced by 

sediment re-suspension due to Manila clam fishing between 1970 and 2002. There was a net loss 

of about 110 Mm3 of sediment from the lagoon, most of which (73 Mm3, ca.70%) was in the 

earlier period. A significant amount was lost by dredging and direct disposal outside the system, 

either on land or at sea, and there was a net loss of 39 Mm3 from the lagoon to the sea through 

the inlets, at an annual rate of 0.5 Mm3. 

Comparison of erosion rates in the two periods revealed an alarming acceleration, from a net 

sediment loss of 0.3 Mm3y-1 in the period 1927-1970 to 0.8 Mm3y-1 in 1970-2002. Deterioration 

caused a shift from a highly differentiated lagoon morphology in the 1930s to a sediment-starved 

and subsidence-dominated structure in the 1970s, and from there to the high-energy and more 

open (bay-like) lagoon of today. 

The results demonstrate the potential application of GIS to reconstruct the recent chronology of 

sediment distribution and to improve the understanding of the geomorphic processes shaping the 
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seafloor, whilst providing an insight into the possible impacts of environmental changes induced

by natural and anthropogenic forcing.

Keywords: bathymetry; morphological evolution; human-driven change; grain-size; lagoon of 

Venice, 45°N, 12°E, coastal zoning
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1. Introduction

The saltmarshes of the Lagoon of Venice (LV) have experienced intense and varied human 

impacts that range from reclamation, waste disposal and livestock grazing to less obvious, more 

modern activities such as restoration efforts (Silliman et al. in press). Large expanses of tidal 

flats and open saltmarshes near cities were converted to port and industrial complexes, resulting 

in their permanent loss (Pinder and Witherick, 1990) and the disappearance of the ecosystem 

function they once performed. 

The substantial changes that have taken place in the morphology of the Lagoon of Venice during 

its history result from a combination of natural processes, human activities, and sedimentological 

responses to such activities. Although knowledge of long-term trends in deposition and erosion 

are important for proper management of coastal ecosystems, it is difficult to gain this knowledge 

from brief field experiments. A long-term, large-scale perspective of the sediment system may be 

obtained, however, by analyzing a sequence of bathymetric surveys over a long time period 

(Jaffe et al., 2007). Understanding how lagoons have responded to past modification is necessary 

in order to prevent further degradation in response to future environmental pressures (Higgins et 

al., 2007), including invasive species (which fundamentally alter saltmarsh community structure) 

and the relatively unexplored and multifaceted effects of climate change (Bromberg Gedan et al., 

2009).

This paper presents a history of bathymetry, deposition, erosion, and morphological changes 

(affecting saltmarshes and tidal flats) in the LV from 1927 to 2002, and relates them to changes 

in land-use and the main physical and sedimentological activities affecting the lagoon 

environment during the last few decades. The history was reconstructed using computer analysis 

(Longley et al., 2001) and hydrographic and topographic surveys conducted by the Venice Water 

Authority (Magistrato alle Acque di Venezia, MAV). This study is not the first to address 

bathymetric changes in the LV (MAV-CVN, 1999; MAV-CVN, 2004; Pillon et al., 2003 and 

Molinaroli et al.,2009) but it is the most comprehensive to date. Molinaroli et al. (2009) 
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performed a precise division of the LV into four sub-basins using GIS-based techniques (Fig. 1): 

Treporti (A), Lido (B), Malamocco (C) and Chioggia (D). The authors also demonstrated that the 

morphological and sedimentological variations between 1970 and 2002 were different in each 

sub-basin. In this paper we used their partitioning to follow the historic evolution of the 

bathymetry of the four sub-basins over more than 70 years, in order to construct two sediment 

budgets, one for the period 1927-1970 and another for 1970-2002. 

2. Study area and historical background

The Lagoon of Venice is the largest lagoon in the Mediterranean. Like many other coastal areas 

around the world, it has been subject to transformations and intense anthropogenic pressure over 

the past few decades which have deeply modified the natural environment. The construction of 

breakwaters at the lagoon inlets during the period 1808-1927 and the dredging of lagoon 

channels for navigation (in 1926 and 1970) have had a significant impact on the lagoon’s 

morphology (Guerzoni and Tagliapietra, 2006).

Tides in the area are semidiurnal, with neap, mean and spring tidal ranges of ca. 45, 65 and 100 cm 

respectively. Saltmarshes are areas within the lagoon above mean sea level, and tidal flats are the 

whole of the remainder of the lagoon below mean sea level except the channels. Tidal flats (mostly

mudflats) are classified as either intertidal or subtidal flats, depending on whether they are above or 

below the mean low water spring tide value of -0.50 m.

Riverine sediment input into the lagoon has been almost completely eliminated, and the 

breakwaters constructed to defend the inlets have greatly reduced the input of coarse marine 

sediment into the lagoon (Day et al., 1998). As a consequence, erosion and subsidence, 

particularly during the last century, have caused a three-fold reduction in the area of saltmarshes 

in the Venice Lagoon to about 35 km2 at present. In the past 15 years or so, projects have been 

undertaken to arrest marsh loss and promote restoration (Scarton et al., 2000). 

Insert Table 1
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Various events can be recognized as important activities affecting structures and processes in the 

morpho-bathymetry of the LV between 1927 and 2002, and are listed in Table 1, chronologically 

subdivided in terms of the two periods considered for the bathymetric comparison (1927-1970 

and 1970-2002). They are:

1. Saltmarsh destruction from 1927 to 1960 to reclaim land for the construction of the industrial 

zone (a total of 22 km2), together with Venice airport and urban development on the lagoon-side 

of the city of Mestre (S. Giuliano), the latter two occupying a further 5 km2;

2. modification of hydrodynamic conditions as a result of the dredging of the  Malamocco-

Marghera ship canal (the “Oil Canal”), in the central part of the lagoon in the 1960s. This work 

affected the first period of the study due to the disposal on land of the dredged material (more 

than 40 Mm3), and the second period by influencing lagoon morphology (e.g. saltmarsh 

distribution and bathymetric features, such as texture, grain size, depth, and erosion rate) 

(Ravera, 2000);

3. increased nutrient and pollutant (trace metals and POPs) loads in the 1960s and 1970s, in 

relation to inputs from the industrial area and the catchment basin, and urban waste from the city 

of Venice (Cossu and De Fraja Frangipane, 1985; Donazzolo et al., 1982). These activities 

produced several million m3 of material with various levels of contamination; the new regulatory 

framework established by the Ministry of the Environment in the 1990s (Ministero Ambiente, 

1993; Apitz et al., 2007) imposed strict guidelines regarding the disposal of this material;

4. dredging for maintenance purposes carried out in the last decade by the Water Management 

Authority of Venice and the Port Authority, amounting to an average of about 1 million m3 y-1 of 

sediments (MAV/CVN 2004), which was dumped  outside or re-used inside the lagoon; and 

5. mechanical clam harvesting by local fishermen since the early 1990s to exploit the newly-

formed banks of Manila clams (Provincia di Venezia, 2000; Pranovi et al., 2004), an alien 

species, intentionally introduced into the lagoon in the middle of the 1980s for aquaculture and 
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which subsequently became widespread throughout the lagoon (Cesari and Pellizzato, 1985; 

Pranovi et al., 2006).

3. Materials and Methods

Insert Figure 1

3.1 Bathymetric datasets

The bathymetric datasets used for assessing historical changes in the LV are derived from three 

maps published by the MAV after survey campaigns conducted in 1927, 1970 and 2002.

The “1927” bathymetric maps were published by the MAV in 1934. They are the result of a 

detailed survey carried out between 1922 and 1933 (central year 1927) and consist of 134 maps 

on a scale of 1:5000. The survey was conducted by performing precise tacheometric 

measurements and manual soundings. A precise altimetric network covered the entire lagoon 

surface. These maps have recently been digitized by the Venice municipal Tide Forecast Centre 

as high resolution TIFs. 

The “1970” bathymetric maps were published in 1971 by the MAV. They were the result of

surveys carried out from 1968 to 1971. Bathymetric data were collected by multiple sampling 

methods: echosounding, tacheometric measurements and stereophotogrammetric analysis. 

The “2002 dataset was collected from the end of 1999 to June 2002, further data being collected 

in spring 2003. A “Multibeam” bathymetric acquisition system was used for the main channels 

(depth >5 m) and the three seaward inlets (Lido, Malamocco, Chioggia). For shallow waters and 

secondary channels (depth <5 m), a single-beam echo-sounder was used. At shallower depths 

near saltmarshes and on tidal flats, data are collected by the traditional topographic method 

(stadia rods coupled to a GPS). The distribution of natural and artificial saltmarshes was 

surveyed by stereo aerial photography. Digital data for both the 1970 and 2002 maps were 

provided by the MAV. 

3.2 Sea-level reference datum and adopted corrections
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Comparison of surveys and their related morpho-bathymetric maps requires consideration of the 

reference datum used during each survey. For a sediment budget calculation, vertical movement 

(of land and sea) also has to be considered, in order to distinguish actual from apparent sediment 

losses.

The datum used in the 1927 map is the National Altimetric Network Zero (NANZ), established 

in 1910 by the IGM (the Italian Military Geographical Institute) with reference to the tide gauge 

at Campo S. Stefano (CSS), Venice. The NANZ corresponds to the average of the high and low 

tides recorded from 1884 to 1909, assigned to the median year 1897 (Dorigo, 1961). In 1923 the 

reference tide gauge of Venice was transferred to Punta della Salute (PdS). Elevation differences 

between benchmarks associated with both CSS and PdS are negligible, in the order of 3-4 mm, 

thus within the tolerance errors of levelling between two geodetic elements.

The hydrographic maps of 1970 and 2002 both refer to the datum established in 1952 (and which 

is still in use), corresponding to the mean sea level recorded at Genoa in 1942 (IGM42). 

Altimetric measurements were carried out in 1968 in order to control and position the new datum 

with respect to the NANZ at Venice. Using the PdS benchmark as the reference control, the 

IGM42 datum was found to be 23.56 cm higher than the NANZ (Cavazzoni, 1977; Ferla et al., 

2006). This value is a result of both the eustatism and subsidence, natural or human-induced 

(Gatto and Carbognin, 1981), which has occurred since the beginning of the last century.

Reference data and sea-level time series are shown in Fig. 2. Mean sea-level data are available 

for both Venice and Trieste; the latter is a tectonically stable maritime city located 115 km from 

Venice, on the eastern side of the northern Adriatic. A graphic indication of the subsidence 

which occurred in Venice during the examined period is given by the differing rates of apparent 

sea-level change in the two cities (Fig. 2b). It was about 10 cm greater in Venice than Trieste 

during the critical period 1927-70, when there was intensive water extraction from the deep 

aquifers underlying the former to supply industries centred on Marghera. According to Gatto and 

Carbognin (1981) the relative level of the land fell by a total of 23 cm over 100 years: ca. 3 cm 
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are due to natural (geological background) subsidence, ca. 9 cm to anthropogenic subsidence and 

11 cm to the rise in mean sea-level. Mean sea level is still rising, with absolute values currently 

up to 27-28 cm above the NANZ.

Considering the above data and the values shown in the graph (Fig. 2), it is now possible to 

specify the correction to use when analysing topographic variations over time.

The differences between mean sea levels measured during, or immediately before, the period of 

survey and the reference datum were calculated for each map, using the long term sea-level time 

series (Fig. 2). The depth correction for the 1927 map, surveyed during 1922-33 (median year = 

1927) is 6 cm, to compensate for the rise in mean sea level compared to the NANZ value (i.e., 

the relative sea level rise which occurred between 1897 and 1927). The average sea level 

measured during the period 1922-33 was adopted as the 1927 mean sea-level. 

Analogously, considering the mean sea level for both the 1970 and 2002 charts as the mean sea 

level calculated over the 10 years before the last year of each survey, no correction is needed for 

either of the maps, since the reference datum (IGM42) is only 1.4 cm higher than the 1970 mean 

sea-level and approximately the same as the mean sea level in 2002.

Calculation of the sedimentary budget requires a more accurate knowledge of the depth values, 

in order to identify the “real” depth changes, i.e., those that are due to erosional or depositional 

processes. Thus, the lagoonal mass balance can be only obtained by eliminating vertical 

movements of both land and sea occurring between each pair of comparison maps. For the 

sediment budget 1927-70, the depth correction adopted is 23 cm, as the approximation of the 

absolute difference between the IGM42 and NANZ levels (23.56 cm), measured at the reference 

PdS benchmark, which is the product of both eustatism and subsidence. Unfortunately, in this 

comparison it was not possible to use differential subsidence values for the individual sub-basins 

of the lagoon, since a precise topographic network for monitoring land displacement is available 

only for the more recent period.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10

Given the use of the same reference datum and the small variations in sea level, the 1970-2002 

mass balance was calculated from original elevation data corrected only for the differential 

subsidence occurring in the lagoon sub-basins during the time span, available from spatial data 

reported by Brambati et al. (2003) and Carbognin et al. (2004).

Insert Figure 2

3.3. Sedimentology

Sedimentological information contemporary with the bathymetric chart of 1927 is very scarce. 

The few papers from that time dealing with surficial sediment characteristics mainly focus on

benthic communities (Vatova, 1940, 1949), and only a rough description of sand/mud ratios in a 

few sub-areas was reported. In contrast, two sampling campaigns performed in the 1970s and in 

2000s provide us with much more information (Molinaroli et al., 2009). The samples from the 

first campaign were collected between 1976 and 1978 by the Sezione Geo-Mineralogica of Ca’ 

Foscari University in Venice, when more than 200 sediment samples (~10 cm thick) were 

collected with PVC pipes. Samples were collected from the lagoon floor, at water depths of 

between 0.1 and 2.4 m. The second set of samples was collected in 2002 by the Institute of 

Marine Sciences of Venice when 140 bottom sediment samples (~8 cm thick) were collected 

with a PVC pipe from the lagoon floor at depths of between 0.2 and 2.2 m. Molinaroli et al. 

(2009) showed that in both cases samples were taken from over the complete lagoon with the 

exception of fish farms and reclaimed areas; the analytical procedures used for the two sampling 

campaigns were practically the same.

3.4. GIS and spatial analysis

3.4.1 Map georeferencing and digitizing 

The three bathymetric datasets (1927, 1970, 2002) were processed to produce three bathymetric 

models of the LV. Every step in the analysis was performed using the ESRI ArcGis and QGIS-

GRASS environments. The datasets were of two types: the 1927 one was supplied in raster 
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format maps (TIFs) by the Venice municipal Tide Forecast Centre, while the other two datasets 

(1970, 2002) were in ESRI shape format, as supplied by the MAV.

The 1927 TIFs were georeferenced using control points recognized on a digital map, the 

Technical Regional Map in Autocad format, nominal scale 1:5000, based on the Gauss-Boaga 

Projection (Italian National Coordinate System). Although the original coordinate system 

adopted in 1927 was different, because the national coordinate system was changed in 1952, a 

previous comparison between the 1927 and 1970 maps, performed by the same institution which 

had published them, stated that the difference was not relevant at the scale involved (Rusconi, 

1987). 

Once geo-referenced, the TIFs were mosaiced to check for overlap. Where the overlapping 

rasters did not match, a check for geo-referencing errors was performed.

The subsequent phase was the digitalization of the morphological features  in the lagoon. The 

dataset included three different geometric types of object: points, polylines and polygons. 

Points were used to represent spot elevation data, while polygons were used to contour the 

saltmarshes. Polylines were used as an aid in the process of building the surface. 

3.4.2 Bathymetric models

To create the lagoon morphological models, a TIN (Triangulated Irregular Network) 

interpolation type was chosen, because it is precise (it maintains the original data at the sample 

points) and varies its precision in accordance with data density. The lagoon was subdivided into 

three morphological categories (saltmarshes, submarine areas and channels) using specific vector 

layers provided by the MAV. Each zone was interpolated individually, to avoid the problems 

associated with abrupt changes in slope. The TIN processed using the whole dataset experienced 

some interpolation problems, located at the transitions between the three categories. The 

interpolated surfaces did not respect the real transition between different morphologies, thus 

introducing errors of volume calculation.
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The three datasets cover different areas, that of 1927 having the widest coverage. This is because 

the area of the lagoon open to tidal circulation varied during the period in question. Therefore an 

analysis mask was used to study the evolution on a common surface. The mask represents the 

open lagoon surface as it was in 1970 without the fish farming and unfinished reclamation areas. 

The analysis mask was supplied by the MAV. All three TINs were checked for interpolation 

errors, which were often caused by errors in the digitalization process. Those errors were of two 

types: positive-to-negative inversion and misplacement of data points, i.e. channel data points 

placed inside saltmarsh polygons. The datasets were thoroughly analyzed to find and correct 

these errors. Once the TINs were validated they were converted to Grids (ESRI raster format) 

with 10 m cells. The cell dimension was chosen to produce as detailed a representation of the 

models as possible while keeping the required processing power within manageable limits. 

Rasters cannot represent vectorial models in detail, because the entities are quantized, and 

therefore limited to describing features bigger than the cell’s dimensions. This means that the 

raster surface area is smaller than the TIN surface area, though the difference amounts to 0.1%. 

This problem was particularly evident when the three rasters (saltmarshes, submarine areas and 

channels) were combined to build the lagoon model. The resulting raster presented “no-data” 

cells at the borders of the three original rasters. This problem was solved by a Map Algebra 

operation which assigned to these no-data cells a mean value calculated from the 8 adjacent cells. 

Although the same analysis mask was used, the three raster models had different total surface 

areas. The difference is small and amounts to 0.2% of the total lagoonal surface area.

Analysis of the data points falling within the polygons of saltmarshes gave different mean 

elevations for each dataset: 0.24 m, 0.22 m and 0.30 m for the 1927, 1970 and 2002 surveys 

respectively. The elevation of the marshes was sampled with different methods in the three 

surveys. Despite being older, the 1927 survey turned out to be most accurate, because the 

marshes were surveyed with tacheometric methods whereas in the two more recent surveys the 

stereo photogrammetric method was applied. Several recent studies show that the North Adriatic 
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vegetated marshes have a typical elevation of between 0.25 and 0.30 m, comparable to the mean 

value of the 1927 survey (Favero et al., 1992; Albani et al., 2001; Bonometto, 2005; Silvestri et 

al., 2005; Marani et al.,2007). The elevation of the saltmarshes is important for the volumetric 

calculations. However, given the lack of consistency in the altimetric measuring techniques used 

in the three surveys, the saltmarshes were converted to rasters with a constant elevation equal to 

the mean value of the 1927 survey, i.e., 0.24 m. 

The three rasters were then reclassified to analyze the frequency distribution of the bathymetric 

categories. Fourteen classes were chosen following a classification used by Rusconi (1987) in his 

analysis of the 1927 and 1970 maps. To perform these analyses the three bathymetric maps were 

considered as “snapshots” of the lagoon at the time, so they were corrected only for differences 

between the sea-level reference datum used and the mean sea level at the time of the soundings. 

Only the 1927 map was corrected, by 6 cm. To calculate volumetric changes, two difference 

rasters were produced by a MapAlgebra operation using the ArcGIS “Raster Calculator” tool. 

The bathymetric values of the 1927 grid were subtracted from the 1970 values and the values of 

the 1970 grid were subtracted from the 2002 values, generating two raster maps of depth 

differences with the same resolution as the input maps, enabling a detailed assessment of the 

morphological changes occurring during the last 75 years. The final maps were corrected for 

datum and subsidence for 1927 and only for subsidence in the period between 1970 and 2002 as 

calculated by Brambati et al. (2003). 

3.4.3 Geostatistics of sediment data 

The 1970 and 2002 sedimentological datasets consisted of two vectorial (point) layers containing 

17 intervals of grain-size. An IDW (Inverse Distance Weighted) interpolation was executed for 

each interval, obtaining 34 grids with 10m resolution cells, representing the spatial distribution 

of specific grain-size dimensions throughout the lagoon. Differences between the sedimentary 

maps of 2002 and 1970 were obtained by subtracting each 1970 map grid from its corresponding 

2002 map grid.
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4. Results and discussion

4.1 Morphological transformations 

The morphologies of the Lagoon of Venice in 1927, 1970 and 2002 are shown in Fig. 3. The 

morphology is typical of a coastal lagoon, where water exchanges with the sea occur through 

three main tidal inlets. A complex network of channels has developed in the lagoon with a main 

channel and reaching the inner lagoon through secondary and then higher order channels 

(creeks). Marshes are found mainly in the inner parts of the lagoon. A significant amount of 

sediment in the northern basin is the result of rapid settling of suspended particles in estuarine 

areas characterised by freshwater inputs from the Silone, Dese and Osellino rivers, which 

account for about 46% of the total riverine inputs of suspended matter to the lagoon (Zonta et al., 

2001). A significant area of marsh have also formed by sedimentation along the edges of the 

channel network (i.e. levees), as a result of the abrupt morphological, and thus hydrodynamic, 

contrast between the channels and the adjacent tidal flats.

Insert Figure 3

Two main phenomena are easily discernible from Figure 3 and Table 2 a, b ,c: the diminution in 

area of the saltmarshes, which decreased by more than 50% from 68 km2 in 1927 to 32 km2 in 

2002, and the progressive deepening of the lagoon, with an increase in the area of subtidal flats 

between -0.75 and -2.00 m deep, from 88 to 206 km2, during the same period. 

Evidence of transgression is seen in the enlargement of subtidal flats deeper than -1.2 m (Fig. 3), 

which represent the remnant of the ancient depressions and ponds of the former Venetian alluvial 

plain, over which the early lagoon formed during the mid-Holocene highstand (Fontana et al., 

2004). In 1927 these depressions had an area of up to 23 km2 and a mean depth of -2.1 m. By 

1970, relative sea-level rise had caused this area to double in size, though the average depth fell 

to -1.6 m. This shallower mean depth is due to the contribution of ca. 22 km2 of flooded subtidal 

flats, formerly between -1.00 m and -1.25 m.
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In 2002, the mean depth was still 1.6 m, although the area of subtidal flats deeper than -1.2 m 

was 105 km2. Since relative sea level did not change significantly between 1970 and 2002, this 

further doubling of the area of deep subtidal flats indicates erosion due to enhanced 

hydrodynamic forcing.

The deepening of the lagoon affected mainly the southern sub-basins C and D, and only part of 

basin B, south of the town of Venice, as already shown by Molinaroli et al. (2009) for the 1970-

2002 period. The distribution of area changes (losses and gains) of the different elevation 

categories within the lagoon (Table 2 b, c) and within each sub-basin was significantly different 

in the two periods. During 1927-70, the greatest area reductions were seen in the saltmarshes and 

intertidal flats. The area expansion of the other categories (below -0.75 m) is related to depth 

increases, as for the subtidal zones, while for the channels, to the effects of the large scale

excavations carried out in the industrial area. Therefore 0.75 m is the fulcrum depth (i.e. the 

depth which separates negative from positive area changes) of the morphological adaptation of 

the lagoon to relative sea-level rise caused by the combined effects of eustatism and subsidence.

The following period (1970-2002) saw the enhancement of erosion, leading to an expansion of 

subtidal flats below -1 m. In contrast, the categories affected by losses were mainly subtidal flats 

at a depth of between -0.5 m and -1 m, the latter depth becoming the new fulcrum of 

morphological adaptation of the lagoon system. 

For sub-basin C, erosion gave rise to an increase of 26.7 km2 in the area of subtidal flats below -

1.5 m, which is currently the greatest modal depth of the four sub-basins of the LV, and more 

than 75 cm deeper than the modal depth of the same sub-basin in 1927. 

The frequency distribution of the areas as a function of elevation in 1927, 1970 and 2002, were 

calculated for the whole lagoon and for each of the sub-basins A to D (Fig. 4). The frequency 

curves of the three periods for the whole LV showed a clear shift in the mode from a value of -

0.62 m in 1927, to -0.87 m in 1970, and -0.88 m in 2002. A similar shift in bathymetry was 

observed by Fagherazzi et al. (2006) when comparing the 1901 and 2000 lagoonal morphologies 
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of the southern lagoon. These authors showed that shallow tidal basins (such as the Lagoon of 

Venice) are characterised by extensive tidal flats and saltmarshes that lie within specific ranges 

of elevations, between which intermediate elevations ( 0.25 m) are less frequent due to their 

inherent instability as a result of fetch (Fagherazzi et al., 2007). With high deposition rates –

such as those of 1901 – the most frequent tidal flat elevation was around -0.50 m, which tended 

to shift towards lower elevations when sediment availability was reduced (Fagherazzi et al., 

2006; Marani et al., 2007).

Despite the difficulties of comparison between Fagherazzi et al. (2006) and the authors 

frequency analysis of lagoon elevations (since the studied surfaces are not coterminous), a modal 

elevation was also observed for the entire lagoon of ca. 0.6 m in 1927. The slight shift from the 

previous value of -0.50 m during 1901, may reflect reduced sediment input due to reclamation 

for the first industrial zone in the 1930s and the damming of rivers in the 1920s. The significant 

additional shift towards -0.87 m by 1970 is related to several reclamations (the 2nd and 3rd 

industrial zones, airport and housing in Mestre), together with the dredging of sediment for the 

Malamocco-Marghera ship canal, which was mostly disposed of on land. The final shift towards 

the value of  0.90 m (seen in 2002) is not so evident as in the previous period, but looking at the 

evolution of the individual sub-basins, it coincides with the subtidal flat erosion phase proposed 

by Defina et al. (2007). According to these authors, in a “starved” lagoon the instability of the 

tidal flats inside basins with large open fetch will ultimately lead to a smooth horizontal bottom 

with increased depths of up to 2.0 – 2.5 m. This is clearly seen in the Malamocco and Lido sub-

basins, where the modal depth is 1.75 m and 1.12 m respectively, both significantly deeper than 

1970. This means that abrupt change has taken place since the large-scale submergence of the 

largest open basin of the lagoon, which caused increased erosion due to wave-induced currents 

during strong NE (Bora) wind events (Cavaleri, 1980; Fagherazzi et al., 2007).

By contrast, during the period 1927-1970, the mean depth in basin A changed by the same order 

as that of the relative sea-level rise. After 1970 no significant morphological changes occurred 
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confirming that a complex and mature lagoon morphology inhibits the effect of wave-induced 

currents by Bora winds to cause erosion.

Insert Table 2

Insert Figure 4

4.2 Historical deposition, stability and erosion 

The differences in bed elevation for the three data sets are presented in the form of erosion maps

(Fig. 5) subdivided into four categories: (1) severe erosion (<-0.5 m difference), (2) moderate 

erosion (difference between -0.1 and -0.5 m), (3) stability and (4) deposition. Stability 

corresponds to the range ±0.1 m, and deposition corresponds to cells with deposition values 

greater than 0.1 m.

Insert Figure 5

4.2.1.Bathymetric chart comparison: 1927-1970

15% of the lagoon is characterized by severe erosion, 29% by moderate erosion, 34% is stable 

and 22% is depositional (fig. 5). The areas affected by severe erosion are concentrated mostly in 

the channels, mainly the Malamocco-Marghera ship canal (the “Oil Canal”) and the whole of the 

industrial area with its canals and docks, which were excavated in the late 1960s. The areas 

affected by moderate erosion are mostly tidal flats. Stable areas are evenly distributed across 

saltmarshes and tidal flats. Deposition is seen in many channels and on some intertidal flats. 

The dominant factor driving morphological transformation in the 1927-1970 interval was 

subsidence, which had a significant human-induced component (c.f. 2.2 and 3.1). Most of the 

areas of severe erosion coincide with the Oil Canal, Vittorio Emanuele Canal and the industrial 

docks, from which about 40 Mm3 of sediment was dredged. The other affected areas were the 

saltmarshes, which by 1970 had been reduced to about half the surface area they occupied in 

1927, with a loss of 25 Mm3. A common phenomenon throughout the lagoon was the erosion of 

the main channels while the secondary channels were characterised by deposition, with some of 
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the material coming from the erosion of the nearby tidal flats and saltmarshes which suffered

moderate erosion. This process is mainly apparent in the open lagoon, especially in the Lido and 

Malamocco sub-basins (B and C), while in the more protected areas where saltmarshes prevail 

(the Treporti and western Malamocco sub-basins), the movements of sediment are more 

complex. In the lagoon as a whole, tidal flat erosion involved the movement of 66 Mm3, of 

which 17 Mm3 was deposited in the channels. On average, the lagoon floor deepened by about 7 

cm, while the mean depth of the channels decreased by 5 cm. 

The individual sub-basins evolved differently. In the Treporti basin (A), tidal flats and channels 

were almost stable (-1 cm and 0 respectively), in the Chioggia sub-basin (D), both tidal flats and 

channels deepened (by 4 and 5 cm respectively). The Malamocco (C) and Lido (B) sub-basins 

suffered the highest erosion of tidal flats (deepening by 10 and 9 cm respectively). Sub-basin C 

also saw the highest rate of deposition in channels (15 cm) followed by sub-basin B (7 cm). In 

the Malamocco sub-basin (C), the high rate of deposition in channels is due to the filling-in of a 

large meander, which was abandoned after the dredging of the Oil Canal.

4.2.2.Bathymetric chart comparison: 1970-2002

The human activities that caused significant subsidence during the 1950s and 1960s were 

stopped in the 1970s but natural subsidence continued to influence the morphology of the 

lagoon. Erosion was severe in 69 km2 (17% of the total area), concentrated particularly in the 

area around the Malamocco inlet (sub-basin C, 38 km2) and Chioggia inlet (sub-basin D, 16 

km2). Moderate erosion affected 32% of the lagoon, especially in large areas to the north and 

south of the city of Venice (sub-basin B). Deposition and stability (affecting 28% and 23% of the 

entire lagoon respectively) prevailed in the Treporti and Lido sub-basins and were concentrated 

especially in the inner part of the lagoon, saltmarshes and surrounding intertidal flats (fig. 5).

The main morphological process in the 1970-2002 period was an extensive deepening, not due to

subsidence, but to serious erosion. The entire area from the island of Venice to Malamocco inlet 

was characterised by widespread erosion of tidal flats, corresponding to ~40Mm3 of sediment 
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(~70% of total erosion), concentrated around the previously dredged Malamocco-Marghera ship 

canal. Throughout the lagoon, channels (especially the minor ones) experienced deposition 

involving movement of ~20Mm3 of sediments from adjacent eroded tidal flats, which produced a 

simplification of the lagoon’s morphological structure. The seaward inlets showed an erosional 

tendency at Malamocco and Chioggia and deposition at Lido. The process of saltmarsh erosion, 

significant during the 1927-1970 period, continued in the following 30 years with a loss of ~7 

km2 (~ 9 Mm3), which was partially compensated by the construction of ~4 km2 of artificial 

saltmarshes (~3Mm3). As in the 1927-1970 period, the sheltered areas on the landward side of 

the lagoon were the most stable and were characterised by deposition.

Subaqueous areas deepened by an average of ~19 cm in the lagoon as a whole, with significant

differences between sub-basins. Sub-basin A was almost stable, whereas B, C and D saw average 

depth differences of -9 cm, -40 cm and -13 cm respectively. Almost 15 km2 of channels 

accumulated sediments, and became ~90 cm shallower than previously on average, while 8 km2

of tidal flats were dredged. Channels were characterised by both deposition and erosion, 

resulting in an average deposition of ~40 cm of sediments.

4.2.3 Continuity of erosion/deposition processes during the period 1927–2002

The changes of sediment volume described above were combined to calculate the average rates 

of deposition and erosion and evaluate the continuity of deposition and erosion processes 

through the two examined periods (Fig. 5).

The 75-year area-weighted mean erosion rate for the entire Lagoon was 0.35 cm y-1, while that 

of the Malamocco-Marghera sub-basin was twice as high ( 0.7 cm y-1). 

Comparison of the two difference maps reveal approximately 90 km2 of the LV characterized by 

continuous erosion (.5 cm y-1) throughout the 75-year period, and 135 km2 of permanently 

stable or depositional areas. In contrast, 180 km2 of the LV saw a change in tendency in the 

second period, either towards instability (becoming erosional) or stability (becoming 
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depositional). Thus, almost one-half of the lagoon experienced continuously high erosion, with a 

severe increase in the final thirty-two years.

More than 35 km2 of tidal flats situated around previously dredged channels in the Malamocco 

and Chioggia sub-basins changed from stable or depositional conditions (0-1 cm y-1) to severe

erosion (3.4 cm y-1), with a total deepening of ~50cm. In contrast, nearly 30 km2 of channels 

characterised by severe erosion or dredging during the 1927-1970 period showed strong 

deposition in the following 32 years, with erosion rates changing from -3.5 cm y-1 to +3 cm y-1.

The acceleration of erosion in the central part of the lagoon is a well-known fact, although there 

is debate as to the causes. The already-mentioned hypothesis of Defina et al. (2007) regarding 

the natural deepening of lagoons with long wind fetch when lacking new sedimentary inputs 

could be the principal cause, but it does not explain the acceleration. A concomitant factor is 

suggested by Sfriso et al. (2005), who stressed the extraordinary and progressive increase in 

sediment suspension and removal from the tidal flats of the LV since the early 1990s due to the 

intensive fishing involving mechanical dredging for Manila clams. 

Continuous re-suspension and alteration of the physical properties of the bottom sediment could 

be responsible for erosive processes causing loss of fine material from the tidal flats. These 

processes have markedly accelerated the deepening. The reduction of the macroalgal beds – both 

before and after the start of clam fishing by means of disruptive techniques – has also 

significantly contributed to the increase in sediment re-suspension and redistribution, favouring a 

loss of material and homogenisation of the grain-size and density of the surface sediment (Sfriso 

et al., 2005).

4.3 Sedimentary budgets and the mass balance of the lagoon

Studies of the evolution of recent sediment deposits in the LV are fragmented and provide 

information which is not readily comparable. In some cases, the erosion/sedimentation data are 

ambiguous since they do not make a distinction between the current status of the phenomenon 

and/or its evolution over the past few decades (Degetto and Cantaluppi, 2004). In addition, 
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several sources of uncertainty occur when attempting to calculate a sediment budget on decadal 

time scales using different methods, concerning of different temporal scales and accuracies. 

MAV-CVN (1996) reported an average sediment loss of about 1x106 m3 year-1, by analysing 

variations in lagoonal sediments over the previous 20 years, excluding eustatism and subsidence. 

Pillon et al. (2003) compared bathymetric maps from 1930, 1970 and 1990, and showed a similar 

average yearly sediment loss (1x106 m3 y-1). Sarretta (2007) calculated a net removal of 

sediments of 0.9±0.1x106 m3 y-1 between 1970 and 2000, and Molinaroli et al. (2009) have 

recently made a detailed comparison of 1970 and 2000 bathymetric charts, together with a 

comparison of sediment grain sizes, showing marked changes in both morphology and 

sedimentation. 

4.3.1 Volumetric differences through bathymetric comparison

Using the maps in Fig. 3 a detailed calculation of the sediment budget was made for the two 

periods 1927-1970 and 1970-2002. The digitized bathymetric data were used to directly calculate 

the sediment volume changes between the surveys in each of the subareas. Table 3 shows all 

relevant data for calculating the sediment budget of the LV in the two studied periods, and Fig. 6 

shows the eroded and deposited material, together with an estimate of the sediment disposed 

either outside the lagoon or lost through the three inlets.

Insert Figure 6

Insert Table 3

In the first period (1927-1970), dredging extracted an estimated 60 Mm3 of material, and erosion 

of saltmarshes and tidal flats produced an additional 34 Mm3 (18+16), making a total of 94 Mm3. 

All the dredged material was disposed of outside the lagoon, approximately 35-45 Mm3 on land 

and the remaining 15-25 Mm3 dumped into the sea outside the lagoon. Of the eroded material, 21 

Mm3 was deposited inside the lagoon, either in channels (17 Mm3) or on saltmarshes (4 Mm3) 

and the remaining 13 Mm3 were lost seaward through the inlets. The total sediment removal 
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from the lagoon in forty-three years was thus 73 Mm3 (~ 1.7 Mm3 y-1), of which the flux to the 

sea through the inlets was 13 Mm3, i.e. 0.3 Mm3 y-1, almost equally distributed among the four 

sub-basins.

In the second period (1970-2002) dredging operations extracted an estimated 11 Mm3 of 

material, whilst erosion of saltmarshes and tidal flats lost an additional 61 Mm3, making a total 

of 72 Mm3. Approximately 3 Mm3 of the dredged material was re-used to construct artificial 

saltmarshes and the remainder (8 Mm3) was disposed of (on land). Of the eroded material, 35 

Mm3 was deposited either in the channels (32 Mm3 ) or on the saltmarshes (3 Mm3 ). The total 

sediment removal from the lagoon in thirty-two years was thus 34 Mm3 (~1 Mm3 y-1), of which 

the flux to the sea was 26 Mm3 , i.e. ~0.8 Mm3 y-1, two-thirds of which was from sub-basin C. In 

this period sub-basin A experienced a net gain in sediments, either from the small rivers or from 

the Treporti channel at the Lido inlet. 

4.3.2. Lagoon/sea interchanges

Direct measurements of the total mass of sediment input and output through the inlets have a 

high level of uncertainty. Contrasting data has recently been published, ranging from 300*103

ton y-1 (Bianchi et al., 2004) to 500*103 ton y-1 (Defendi et al., this issue) to 600*103 ton y-1

(Chiarlo and Fornasiero, 2005). Those estimates refer to the present situation.

Table 4 shows the sediment budget subdivided for the four sub-basins. As in Fig. 6, it is derived 

from comparison of bathymetric chart. The rate of sediment loss to the sea has been transformed 

from m3 to tons, assuming a uniform density of 2,650 kgm-3 and 50% porosity, in order to 

compare it with published flux data. Data on riverine input are also listed, but only for the more 

recent period, since no useful data are available for the period prior to 1970. It can be seen that 

not only was the average total yearly loss from the lagoon quite different during the two periods 

(400 and 1100103 ton y-1), but the relative rate of loss from the four sub-basins through the 

inlets was also very different. The rates of loss were fairly evenly distributed across the sub-

basins in the period 1927-1970 (between 30 and 150 *103 ton y-1), whereas approximately 80% 
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of all losses from the LV in the period 1970-2002 ( 1100 *103 ton y-1) came from the 

Malamocco sub-basin alone ( 900 *103 ton y-1), while the northern sub-basins (A and B) were 

almost stable. In the latter period, river input was negligible for the LV as a whole (less than 3%) 

but was significant for sub-basin A, which seems to be the only one which has not lost sediment 

and where river input may have positively affected sedimentation. Inputs could be from the 

turbid plume of the Piave during flooding and through Lido inlet (see Amos et al., in press).

The historical data matches quite well the estimates of Degetto and Cantaluppi (2004), who 

recently used radiochemical methods based on 210Pb and 7Be to obtain the mass balance of 

particulate material exchanged at the seaward inlets of the LV. The two radionuclides were 

assumed to give different temporal indications, i.e., longer for 210Pb (decades) and much shorter 

(one-two years) for 7Be. The results obtained with 7Be were considered reliable enough, albeit 

strictly limited to the period investigated (1999-2000), and showed an average yearly imbalance 

(sediment loss) of  800*103 ton (range 300-1300) from the lagoon as a whole. The central-south 

lagoon was found to be the most highly eroded ( 1100*103 ton y-1), while an accumulation of 

300*103 ton y-1 was calculated for the northern lagoon. According to Defendi et al (in press), the 

situation seems to have changed, since their recent surveys suggest that most of the sediment 

exchange between the LV and the sea (~ 600 *103 ton y-1 in total), is through the Lido inlet (~ 

400 *103 ton y-1), leaving Malamocco and Chioggia only 10% and 25% of the total budget 

respectively. 

Insert Table 4

4.4. Relationship between variations in sediment texture and erosion/sedimentation patterns

Recently, Molinaroli et al. (2009) made a detailed comparison of LV sediment grain-size data 

from 1970 and 2000. The surficial sediments of the lagoon consist predominantly of clayey silts 

in both datasets (mean mud content was 75% for 1970 and 68% for 2000, dry weight) 

(Molinaroli et al., 2007). In both datasets the silt fraction dominates over other fractions, but with 

a general tendency to decrease between 1970 and 2000, with the exception of basin C. In all sub-
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basins, the earlier samples have a lower sand content than the later ones. The 1970 and 2000 

samples have a similar clay content, except for sub-basins A and D, where slight differences 

between the two datasets are observed (Table 4). The latter authors showed that there was a clear 

increase in sand content from 1970 to 2000 throughout sub-basins C and D, especially towards 

the landward side. Very high sand content is also evident in 2000 from sub-basin B and around 

the city of Venice. The sediment of sub-basin A does not show any significant variation (see Fig. 

8 in Molinaroli et al., 2009). The authors also presented data on surficial sediments in the form 

of ternary diagrams based on Flemming’s sand/silt/clay ratios (2000). The location of data points 

within the diagram reflects specific hydrodynamic energy conditions. The sediment composition 

of the LV is described by a diagonal band that gradually expands towards the silt-clay axis. The 

textural gradient in sub-basin A shows a shift towards higher silt/clay content between 1970 and 

2000, indicating a general decrease in energy in this sub-basin. In sub-basin B, most of the 

sediments have become richer in sand, while those of sub-basins C and D have become richer in 

silty sands and very silty sands (see also Fig. 7 in Molinaroli et al., 2009), indicating a general 

increase in tractive force.

The spatial distribution of differences in sand content (Fig. 7) shows the greatest increases 

around the city of Venice, especially on the southern side, between the city and the industrial 

area of Porto Marghera and between the city and the Lido inlet. Significant sand enrichment was 

also found in the southern part of the lagoon around the watershed between sub-basins C and D.

The spatial distribution of differences in clay shows the greatest enrichment in the northern part 

of the lagoon and towards the landward side, from the airport to the industrial area (see Fig. 1). 

Other locations in which appreciable enrichments are found are located in the southern lagoon.

Insert Table 5

Insert Figure 7

http://www.wordreference.com/enit/watershed
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In order to explore the relationship between variations in sediment texture and 

erosion/sedimentation patterns six representative sub-areas with different erosion/deposition 

characteristics were selected and the average grain-size data for each of them was calculated 

(Fig. 8). The average differences between three grain size intervals (<8, 8-63, and >63 m) in 

1970 and 2002 were calculated and represented by histograms (Fig. 8). The six selected areas 

cover more than 120 km2 and show a volume of removed sediment of 26 Mm3, accounting for 

almost one-third of the area and the sediment budget of the LV.

Insert Figure 8

Insert Table 6

There has been deposition of fine particles in the northern sub-basins (A and B-north) where 

there is still some riverine input from the turbid plume of the Piave during flooding and through 

Lido inlet (see Amos et al., in review), and winnowing of sand in the watershed between sub-

basins C and D. The calculated sedimentation rates are  0.3-0.4 cm yr-1. Erosion of fine-grained 

material occured in sub-basins B-south and C, and erosion of sand in part of sub-basin D, around 

some of the channels excavated in the 1980s in connection with the Chioggia inlet. In this case 

the erosion rates ranged from 0.7 to 2.5 cm yr-1. 

These data are in agreement with radiochronological investigations conducted in the 1980s and 

1990s, which revealed a sedimentation rate of 0.3–0.5 cm y-1 in the more recent deposits 

(Donazzolo et al., 1982; Battiston et al., 1985, 1986). Evidence of erosion was reported in the 

early 1990s for the southern lagoon and more recently for the central lagoon, between the 

industrial area and Venice (Degetto, 1997; Degetto and Cantaluppi, 2004).

Bellucci et al (2007) studied five saltmarsh sediment cores taken from around LV and found that 

the inventories of excess 210Pb were slightly higher than those expected from atmospheric 

deposition, due to some contribution from sediment re-suspended from tidal flats or eroded from 
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marsh edges. Average accumulation rates were  0.3 cm y-1 (range: 0.1-0.4 cm y-1), comparable 

to the average rate of mean sea level rise during the last century in Venice.

The erosion or sedimentation rates at three stations in sub-basin B and one in C were studied by 

Sfriso et al (2005) between 1989-1999. They showed that all stations in sub-basin B were 

affected by sediment losses, with mean erosion rates of between 0.5 and 3.6 cm yr-1, while the 

other, despite being in the most unstable sub-basin of all (C), showed no significant bathymetric 

change, due to the sea-grass growing on the bed. The authors stated that their data agreed with 

the previous indirect estimation of sediment loss, which was based on the number of fishing 

boats operating in the lagoon on an annual basis.

The deterioration of the lagoon in terms of morphological and thus ecosystem complexity is 

mainly due to the transgressive effects caused by human-induced subsidence, superimposed on 

the natural sea-level rise. It has been demonstrated that in a sediment-starved lagoon such as the 

Lagoon of Venice, tidal flats are characterised by instability due to the effect of wave-induced 

currents caused by wind acting on large-fetch basins. When morphological complexity and 

saltmarshes are lacking, this will ultimately lead to a smooth horizontal lagoon floor of 2.0 – 2.5 

m deep (Defina et al., 2007; Fagherazzi et al., 2006, 2007).

Nevertheless, it does not seem that this phenomenon can alone account for the critical erosion of 

the Malamocco sub-basin, where the recorded modal depth in 2002 was -1.75 m, i.e. more than

one metre deeper than 75 years before.

The southern lagoon experienced the intense impact of clam fishing with illegal mechanical 

harvesting during the 1990s due to the introduction and spread of the exotic Manila clam. In 

addition, the Malamocco basin also contains legal Manila clam fishing concessions, which 

were granted in order to control farming and exploitation. The practice had serious 

consequences, due to the high number of fishing boats dredging the lagoon bed, which caused 

re-suspension and alteration of the physical-mechanical properties of the sediment. Thus the 

increased susceptibility to sediment erosion due to clam fishing/harvesting, combined with 
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enhanced bottom shear stress due to more powerful wind waves in a deep lagoon basin with a 

large fetch, could easily explain the unexpected deepening of the southern lagoon. 

Insert Fig. 9

Comparison of the area distribution of elevation categories in the four sub-basins today clearly 

show the striking similarities between the A, B and D sub-basins and the LV as a whole in 1927, 

1970 and 2002 respectively (Fig. 10). The current state of the different sub-basins (ontogenesis) 

reflects the historic evolution of the lagoon as a whole (phylogenesis): thus sub-basin C possibly 

indicates the future trend of the entire lagoon.

While this is a relatively comprehensive study of historical physical changes, it is incomplete in 

that the sediment budget is still uncertain. More precise quantification of the modern lagoon 

sediment budget will require both a better understanding of fluvial input and extraction of 

dredging and a sediment transport model designed to explain historical changes in the sediment 

budget. The combination of cartography and modelling used in this study should be applicable to

other systems where large changes in morphology have occurred on historical time scales.

5. Conclusions

A detailed GIS-based analysis of bathymetric surveys carried out in the Lagoon of Venice in the 

periods 1922-1933, 1968-1971 and 1999-2003 was used to reconstruct historical sedimentation 

patterns. Analysis of available data on bathymetry, morphology and grain-size reveals that large-

scale morphological changes have been directly and indirectly caused by human actions, 

including navigational improvements (docks, dredged navigation channels), urban settlement, 

industry (water extraction for industrial plants and subsequent subsidence, filling of wetland 

areas) and exploitation of natural resources (fish-farming, harvesting of clams with mechanical 

dredges). Lesser changes are attributable to natural erosion and sedimentation. 

The main results are as follows:
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1. Saltmarsh areas decreased by more than 50%, from 68 km2 in 1927 to 32 km2 in 2002. 

2. The subaqueous area is progressively deepening, with the modal depth shifting from a 

value of -0.62 m in 1927 to -0.87 m in 1970 and -0.88 m in 2002. The final change seems 

negligible for the lagoon as a whole but is the result of a compensation effect between the 

erosional southern part and the stable-depositional northern part.

3. The deepening is mostly due to the areal expansion of the deepest subtidal flats (between 

-0.75 m and -2.00 m in depth), from 88 to 206 km2 during 1927-2002. 

4. Depth increases in the 75 year-period mainly affected the Malamocco sub-basin, which 

increased from -0.64 to -1.75 m on average, followed by Chioggia, from -0.39 m to -0.88 

m, and Lido, from -0.65 m to -1.12 m.

5. There has been a net loss of about 110 Mm3 of sediment from the LV, the majority of 

which (73 Mm3, about 70%) occurred during the first period. A significant amount was 

lost by direct disposal of dredged sediment outside the LV, either on land or at sea, whilst 

39 Mm3 was lost from the lagoon to the sea throughout the inlets, at an annual average 

rate of 0.5 Mm3. 

6. Considering only the net export of lagoon material to the sea, sedimentary budget 

calculations revealed an alarming acceleration of erosion, from a net sediment loss of 0.3 

Mm3y-1 during 1927-1970 to 0.8 Mm3y-1 in 1970-2002. As a consequence, the lagoon was 

transformed from a highly complex, well-developed microtidal lagoon during the 1930s, 

to a sediment-starved and subsidence-dominated lagoon in the 1970s, and then to the high 

energy-dominated, flatter-bottomed and more open (bay-like) environment of today, 

where the simplified morphology and increased depth of the lagoon bed favour water 

exchange with the sea, thus weakening its estuarine features.
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FIGURE CAPTIONS

Figure 1 – The Lagoon of Venice and four sub-basins (A to D), separated by broken lines.

Figure 2 – ( a) Mean sea level for Venice and Trieste compared to reference datums. Moving 

averages (11 years) are in bold. (b) Absolute difference in mean sea level between 

Venice and Trieste. Sea level data conventionally refer to a plane located 150 cm 

below the National Altimetric Network Zero (NANZ).

Figure 3 – Colour-shaded bathymetric maps of Lagoon of Venice (from left to right: 1927, 

1970;  2002). Dotted red line indicates migration of -1.2 m contour line, showing an 

overall increase in depth (progressively darker blue colour). Emergent areas are 

indicated in green. 

Figure 4 – The Distribution of surface areas of specific elevation categories in 1927 ( dotted 

line), 1970 (dashed line) and 2002 (solid line) in whole Lagoon of Venice (central

plot) and sub-basins A to D.  

Figure 5 – Colour shaded sedimentation maps for 1927-1970 (left) and 1970-2002 (centre), 

and map of continuity/change in sedimentary regime from first to second period

(right). Severe erosion means altimetric differences of <-0.5 m, moderate erosion 

means differences of between −0.5 and −0.1 m, stability means differences within 

0.1 m, deposition means differences of >0.1 m. Histograms show regimes of the 

four sub-basins in the two periods. Continuous erosion was seen mainly in the 

subtidal flats. Continuously stable and depositional areas are mainly saltmarshes; 

changes towards erosion (instability) result from enlargement of permanent erosion 

areas; changes towards deposition result mostly from channel infilling. 

Figure 6 – The sediment budget for whole lagoon (left:1927-70; right: 1970-2002). Riverine 

input was considered negligible. An unknown portion of dredged material was 

probably handled more than once. Dashed arrows refer to a negative budget 

(erosion or dredging), solid arrows indicate a positive budget (sedimentation). 

Numbers inside circles are the sum of dredged (grey) and eroded (black) material 

from tidal flats and saltmarshes. Net loss is the result of a balance between eroded 

and re-sedimented material. 20 Mm3 of dredged sediment were dumped offshore 
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during 1930-1970, whereas during 1970-2002, dredged material was partially re-

used for morphological reconstruction (artificial marshes).

Figure 7 – Differences between 2000 and 1970 in distribution of sand (>63 µm, left) and clay 

(<2 µm, right). 

Figure 8 – Grain-size variations from 1970 to 2000 in six sub-areas (areas I, II, V = 

deposition; II, IV, VI = erosion; see Fig. 5 for colour code). Histograms show 

combined grain size intervals (<8, 8-63, and >63µm) 

Figure 9 – Comparison of area distribution of elevation categories. Above: sub-basins A, B, C 

and D in 2002; below: whole Lagoon of Venice in 1927, 1970 and 2002 . Note 

similarities between A, B and D and three historic periods. Evolution of different 

sub-basins (ontogenesis) reflects the historic evolution of whole lagoon 

(phylogenesis). Sub-basin C may indicate future trend of entire lagoon.
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TABLE CAPTIONS

Table 1- Chronology of events recognized as strong factors able to affect structures and processes in 

the morpho-bathymetry of LV between 1927 and 2002.

Table 2a – Area and areal changes of depth range for 1927, 1970 and 2002; the entire lagoon.

Table  2b – Area by depth range for 1927, 1970 and 2002 for each sub-basin

Table  2c – Areal changes of depth range for 1927, 1970 and 2002 for each sub-basin

Table 3 – Relevant data for the entire lagoonal sediment budget calculation in the two studied 

periods. The budgets derive from bathymetric chart comparison. The data on dredged 

material disposed of on land was supplied by MAV; the difference indicated was lost though 

inlets.

Table 4 – The relevant data for calculating sediment budget of each sub-basin during the two studied 

periods. Rates of sediment loss to sea were averaged for 43 years and 32 years respectively 

and compared with riverine input. The riverine data for period 1970-2002 are from Collavini 

et al.(2005) and refer to years 1999-2000.

Table 5 – Mean values and ranges (in brackets) of surficial sediment grain-size of tidal flats inside 

each lagoonal sub-basin; (after Molinaroli et al., 2009, modified)

Table 6– Relevant data for six zones shown in figure 9
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FIRST 
PERIOD

EVENT NOTES

1910-1934 new harbour walls at Chioggia inlet modification of lagoon-sea exchanges

1928 fish farming areas separated from rest of LV reduction of lagoon surface area (85km2) / 
reduction of water residence time

1917-1935 land reclamation for 1st Industrial Zone (IZ) saltmarsh destruction,  (5 km2, West of City of 

Venice)

1931-34 construction of trans-lagoon bridge (Ponte della 
Libertà)

modification of tidal current pattern

1950-53 land reclamation for 2nd Industrial Zone saltmarsh destruction  (5 km2, South of 1st IZ)

1957 land reclamation for housing (S. Giuliano, east of 

Mestre)

saltmarsh destruction  (2 km2, North of trans-lagoon

bridge)

1958-1962 airport construction saltmarsh destruction (~3km2),  excavation of new 

artificial canal from airport to Venice city

1962 land reclamation for 3rd  Industrial Zone (never 

completed), now called "Casse di Colmata", i.e. 

unfinished reclamation islands

saltmarsh destruction (12km2, South of 2nd IZ)

1966-1969 excavation of Malamocco-Marghera navigation 

channel (“Oil Canal”)

30-50 Mm3 of sediments disposed of in landfill 

areas outside the lagoon / modification of 

hydrodynamic conditions

1930-1970 major development of Industrial activities from 1932 to 1972, ~12 cm of subsidence were due 
to water extraction for industrial use

SECOND 
PERIOD

from '70s on dredging of Porto Marghera channels disposal of 5-15 Mm3 of polluted sediments, in part 
outside lagoon

1970-1980 increased discharges from Industrial area 

(nutrients, metals, POPs) 

part of sediments becoming more and more 

polluted, and thus not suitable for re-use inside 

lagoon

80s eutrophication and subsequent macro algae 
blooms and anoxia

Lagoon bed covered by high quantity of biomass 
(up to 10-25 kg m-2)

middle '80s introduction of Manila clam for aquaculture 
purposes

concession of lagoon areas (~14km2)  for clam 
cultivation and harvesting (seagrass loss, sediment 
re-suspension and alteration of physical properties)

from  1990 dredging for renovation of Port area 3-5Mm3 of sediments, partly disposed of outside 
lagoon

1992 construction of artificial "Tresse" island to dispose 

of polluted industrial waste 

saltmarsh destruction (~2 km2)

90s "invasion" of LV by Manila clam disturbance of  sediments through mechanical clam 

harvesting

1990-2000 construction of artificial saltmarshes (~4 km2) Re-use of non polluted sediments dredged from 

channels (3-4 Mm3)

Tab. 1
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Tab. 2a –
Area (km2) Area changes (km2)

Depth 
interval 

(m) 1927 1970 2002
1970-
1927

2002-
1970

2002-
1927

<25 0 0 0 0.0 0.0 0.0
-25/-20 0 0 0 0.0 0.1 0.1
-20/-15 1 2 2 1.1 0.0 1.0
-15/-10 5 7 6 2.4 -0.7 1.7
-10/-5 20 20 17 -0.3 -2.6 -2.9
-5/-2 29 32 39 3.4 6.5 9.9

-2/-1.5 10 18 54 7.3 35.7 43.0
-1.5/-1.25 10 21 38 11.5 16.9 28.4
-1.25/-1 20 52 55 32.2 3.4 35.6
-1/-0.75 48 82 59 34.5 -23.2 11.2

-0.75/-0.5 84 67 49 -16.6 -18.5 -35.0
-0.5/-0.25 77 45 37 -31.7 -7.5 -39.2

-0.25/0 39 23 19 -15.9 -3.8 -19.8
>0 68 39 32 -28.8 -6.5 -35.3

Total 409 409 408 -0.9 -0.2 -1.1
Tab. 2b 

Depth 
interval 

(m)

1927 Area (km2) 1970 Area (km2) 2002 Area (km2)

A B C D A B C D A B C D
<25 0 0 0 0 0 0 0 0 0 0 0 0

-25/-20 0 0 0 0 0 0 0 0 0 0 0 0
-20/-15 0 0 0 0 0 0 1 0 0 0 1 0
-15/-10 0 3 2 0 0 4 2 0 0 4 2 0
-10/-5 4 6 6 3 4 6 6 4 4 5 5 4
-5/-2 5 7 8 8 5 6 9 11 5 7 14 12

-2/-1.5 1 1 4 4 1 3 8 6 1 6 34 12
-1.5/-1.25 0 2 4 3 1 5 10 6 1 11 15 12
-1.25/-1 1 4 7 8 5 14 17 16 9 20 11 15
-1/-0.75 6 11 14 16 13 25 26 18 15 18 9 18

-0.75/-0.5 15 24 25 20 20 11 18 18 21 7 8 13
-0.5/-0.25 19 13 24 21 16 8 7 14 15 4 8 10

-0.25/0 16 8 8 8 9 2 5 7 7 3 5 4
>0 21 8 19 19 12 3 12 11 10 3 8 10

Total 88 88 121 111 88 87 121 111 88 87 121 111
Tab. 2c 

Depth 
interval

(m)

Area changes 1970-1927 
(km2)

Area changes 2002-1970 
(km2)

Area changes 2002-1927 
(km2)

A B C D A B C D A B C D
<25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-25/-20 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0
-20/-15 0.0 0.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 0.0
-15/-10 0.2 1.2 0.9 0.1 0.0 -0.2 -0.7 0.1 0.2 1.0 0.3 0.2
-10/-5 -0.2 0.1 -0.7 0.4 -0.5 -0.5 -1.1 -0.4 -0.7 -0.5 -1.7 0.1
-5/-2 0.5 -1.2 0.9 3.1 -0.3 0.6 5.2 1.1 0.2 -0.6 6.1 4.2

-2/-1.5 0.5 1.5 3.6 1.8 -0.1 2.8 26.7 6.2 0.4 4.4 30.3 8.0
-1.5/-1.25 0.5 2.6 5.4 3.0 -0.1 5.9 5.4 5.6 0.4 8.5 10.8 8.6
-1.25/-1 4.2 10.3 9.7 7.9 3.6 6.5 -5.5 -1.2 7.8 16.8 4.2 6.7
-1/-0.75 6.5 14.1 12.2 1.7 2.2 -7.8 -17.7 0.0 8.7 6.3 -5.4 1.6

-0.75/-0.5 5.8 -12.9 -6.6 -2.8 0.2 -4.3 -10.2 -4.2 5.9 -17.2 -16.8 -7.0
-0.5/-0.25 -2.8 -5.5 -16.5 -6.8 -0.8 -4.1 0.9 -3.6 -3.6 -9.6 -15.6 -10.4

-0.25/0 -6.4 -5.5 -3.0 -1.0 -2.1 0.5 0.5 -2.6 -8.6 -5.0 -2.5 -3.6
>0 -8.9 -5.0 -7.2 -7.6 -2.0 0.2 -3.7 -1.0 -10.9 -4.7 -10.9 -8.6

Tab. 2
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Entire Lagoon of Venice 1927-70 1970-2002

Km2 Depth  
variation (m)

Mm3 km2 Depth  
variation (m)

Mm3

sedimentation inside lagoon

   a) within channels 44 0.05 2 50 0.40 20

   B completely filled channels 7 2.08 15 14 0.87 12

   c) extension of saltmarshes 4 1.08 4 4 0.62 3

dredged sediments 22 -2.78 -60 9 -1.22 -11

sediment eroded 

   a) tidal and subtidal flats 269 -0.07 -18 287 -0.19 -54

   b) saltmarshes 26 -0.63 -16 10 -0.67 -7

artificial saltmarshes 4 0.91 3
disposed of outside lagoon 60 8

lost through inlets -13 -26

Tab. 3
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Sub-basin
Budget 
(Mm3)

Disposal 
outside 
(Mm3)

Lost to sea 
(Mm3)

Rate of 
loss in

m3*103yr-1

Rate of 
loss in

tons^ 103 

yr-1

River 
input 

m3 103 yr-1

19
27

-1
97

0 A - Treporti -7,0 6 -1,0 -23 -31
B - Lido -20,0 17 -3,0 -70 -92
C - Malamocco -34,2 30 -4,2 -98 -130
D - Chioggia -12,0 7 -5,0 -116 -153
Total Lagoon -73,2 60 -13,2 -307 -406

19
70

-2
00

2 A - Treporti 1,7 0 1,7 54 71 14
B - Lido -4,1 2 -2,1 -65 -85 8
C - Malamocco -24,1 3 -21,1 -659 -870 4
D - Chioggia -8,0 3 -5,0 -156 -206 7
Total Lagoon -34,4 8 -26,4 -826 -1090 33

(^) Volume estimates assume uniform density of 2,650 kgm-3and 50% porosity

Tab. 4
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Sub-
basins

Sand 1970
(%)

Sand 2000
(%)

Silt 1970
(%)

Silt 2000
(%)

Clay 1970
(%)

Clay 2000
(%)

A 8 (0-49) 11 (2-43) 68 (44-84) 61 (45-72) 24 (8-51) 29 (11-43)
B 19 (3-64) 31 (1-91) 60 (25-86) 48 (6-70) 21 (8-35) 22 (3-46)
C 40 (3-96) 42 (6-83) 41 (2-65) 41 (12-73) 19 (1-45) 18 (3-40)
D 39 (0-97) 48 (1-98) 42 (2-73) 36 (1-62) 20 (1-47) 16 (0-45)

Tab. 5
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Sub-
zone

Area ID
Erosion/  
Deposition 
regime

km2

Mean 
depth 

variation
(m)

Sedimentation/erosion 
rate (cm yr-1)

Volume 
(Mm3)

I A SD 19 0.12 0.4 2
II A/B SD 28 0.08 0.3 2
III B ME 24 -0.23 -0.7 -5
IV C SE 27 -0.81 -2.5 -22
V C/D SD 16 0.11 0.4 2
VI D SE 8 -0.60 -1.9 -5

SD: stability + deposition; ME: moderate erosion; SE: strong erosion

Table 6
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